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Abstract: Skin cancer is the most common of all cancers that exist in the 

world and melanoma is the deadliest among all the skin cancers. It is found 
that melanoma roughly kills a person every hour somewhere in the world. 
Considering the severity of the disease, significant effort goes into minimizing 
delays in the process of diagnosing melanoma. There are several approaches 
based on Machine Learning (ML) that can assist dermatologists in melanoma 
detection. However, many experts hesitate to trust ML systems due to their 
black-box nature, despite the accuracy of their performance. This highlights 
the need for applications that facilitate not only accurate classifications but 
also the ability to justify such decisions. In this work, we propose a prototype-
based interpretable melanoma detector that uses the Seven Point Checklist, a 
well-known criterion used for the detection of melanoma. Prototypes provide 
the justification behind the decisions suggested by the ML model in a way of 
showing similar cases that are already known. In addition to identifying the 

dermoscopic features listed in the seven-point checklist, our work aims to 
provide reasoning that is similar to the ones used by the dermatologists in 
clinical practice for each decision made by the model. F1-Score has been used 
as the main performance metric in evaluating the model performance and that 
of the best performing class was 0.87. Furthermore, we show comparisons of 
our approach with Local Interpretable Model-Agnostic Explanations (LIME), a 
popular approach for interpretability for deep learning models. 

Keywords: Skin lesion, dermatology, deep learning, interpretable ML, 
prototype-based, melanoma, seven-point checklist 

I. INTRODUCTION 

Melanoma is a type of skin cancer that occurs mainly in Melanocytes 
which cause the color of human skin. It can also take place in other parts of the 
body such as the eye, intestines, etc if they contain pigmentation issues. 
melanoma brings out visible signs such as the occurrence of new moles and the 
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change of appearance of existing moles. Despite the seriousness of this disease, 
melanoma seems to be common among people in countries like the United States 
of America, New Zealand which proves that the disease is prevalent among white-
skinned people. Unfortunately, about one out of every fifty Americans get 
diagnosed with melanoma in their lifetime [1]. 

Dermatology is a field of medicine that involves studying and specializing 
in the skin which is the largest organ of the human body, nails, and hair, and the 
medical conditions related to them. In order for dermatologists to save more lives 
of melanoma victims, it is extremely important to identify the disease at the early 
stages and direct the diseased to medications as soon as possible. Seven-point 
criterion, ABCD rule based on the criteria asymmetry (A), border (B), color (C), 
diameter (D), and pattern analysis are some of the widely accepted criteria among 
the practitioners and they are used initially to determine whether a skin lesion is 
benign or not before any further examinations. Seven Point Checklist as shown in 
Table 1 is a scoring algorithm that considers seven of the major contributing 
dermoscopic features to melanoma [2]. 

 
TABLE. 1 Seven Point Checklist 

 
Feature Score 

Atypical pigment network 2 

Blue-whitish veil 2 

Atypical Vascular Pattern 2 

Irregular pigmentation 1 

Irregular streaks 1 

Irregular dots and globules 1 

Regression structures 1 

 
Skin lesion image datasets that are available publicly for research related 

to dermatology mostly tend to contain either clinical images [3-6] or dermoscopic 
images [7-9]. Some of the datasets contain both of these types as well [10]. 
Derm7pt [10] is one of such publicly available datasets for research related to 
dermatology. It contains dermoscopic and clinical images of skin lesions along 
with metadata containing seven-point criterion-related information. 

Many machine learning-based image classifiers have been introduced in 
several researches for skin image classification and especially melanoma detection 
throughout the past few years. These research works have focused on various 
concepts such as disease classification, pattern identification, concept-based 
prediction etc. Despite the high performance of classification, these existing 
machine learning-based skin lesion diagnosis systems still are not considered to 
be reliable. This is mainly due to its black-box nature which induces the inability 
of the systems to provide a human understandable reason behind its predictions. 
Interpretability is a crucial component of machine learning approaches that are 
introduced to serve the medical domain to address several problems in the field. 
There are various techniques like visualization, prototyping, feature statistics, etc. 
However, the amount of interpretability expected by a system will depend on the 
expertise on the subject of the end-users of the system to whom the reasoning will 
be provided by that model. 

Deep learning, a class of machine learning methods, has been featured in 
many computer-aided diagnostic systems in medicine and healthcare. As a 
significant health issue in several countries, melanoma has been getting lots of 
attention from researchers, especially in terms of detecting it early to enable more 
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effective treatment. As a result, there is a significant number of deep learning-
based applications for machine learning based melanoma detection [11-13]. 

A computer-aided diagnosis system is proposed in [11] for melanoma 
detection using deep learning. The model has achieved its best accuracy of 99.1% 
on the PH2 dataset with the use of VGG-16 as the base architecture. The model 
has also been tested with the ISIC 2016 dataset and the model has performed 
better on both datasets after using augmentation techniques on them. Another 
deep learning-based approach is discussed in [12] that have overcome the 
limitations in the performance of typical applications due to the complexity of 
visual features in skin lesion images with the use of an encoder-decoder network. 
This network has been boosted with a multi-stage and multi-scale approach in 
order for the model to grab complex features   and deal with different-sized skin 
lesions. It has performed with 95% accuracy on the ISIC 2017 dataset and 92% 
accuracy with the PH2 dataset. 

Various researchers have attempted to address this issue by examining 
various parts of the topic. Some approaches have taken key conceptual features 
and criteria considered by dermatologists in identifying Melanoma [14-17]. 
Another set of researchers has used metadata like age, medical history, etc in 
addition to medical images to achieve better performance ([15, 18]). Skin lesion 
image classification with the use of Convolutional Neural Networks and disease-
wise labeled skin images is also a common technique among most of the research 
works [19-20]. Some have also used hybrid approaches derived from the 
approaches mentioned earlier [15, 17]. An approach discussed in [14] for detecting 
skin cancer using the ABCD rule achieving a best accuracy of 84%. The CNN 
model in [15] outputs all the labels related to each category of features present in 
the Seven-Point Checklist, one of the heavily accepted criteria for identifying 
melanoma among practitioners. It has not only used dermoscopic images, but also 
clinical images and metadata to build the model which has achieved an AUROC of 
89.6% at its best case. Another interesting work in [17] that has used both 
handcrafted and pre-trained CNN features to identify melanoma. Feature selection 
with genetic algorithms has been applied to improve the performance of the model 
and it has achieved its best performance of 98% overall accuracy on the PH2 
dataset with the use of ResNet as the base architecture. 

Interpretability is one of the crucial requirements when it comes to 
decision support systems in the medical domain due to the potentially severe 
outcomes of a misclassification and the need for the ML systems to be trusted by 
medical practitioners. Hence, ML researchers have begun to pay more attention to 
the interpretability of the machine learning systems which are to be used in 
decision making. Such approaches have achieved interpretability in different 
ways. Some have used concept-based techniques [21]. Interpretability via 
visualization techniques [22-24] such as heatmaps is another method that has 
been used   in research in this domain. A novel CNN based pipeline is describe in 
[23] for Melanoma identification with the WSIs (Whole-slide images) along with a 
heat map-based interpretability approach. The Grad-CAM (Gradient-weighted 
Class Activation Mapping) method has been used to produce visual explanations 
for the classifications made by the model. The model has achieved an AUROC of 
0.962 according to the evaluation results. Another recent work is discussed in [24] 
that has followed an ensemble approach for the diagnosis of Melanoma in skin 
lesions. This approach also has used heat maps as visual explanations for their 
classifications. Among the different ensembled models that have been tried out by 
the researchers, the best performing model has achieved an accuracy of 0.92. 

Prototype-based interpretability is another technique that could bring 
user-friendly and reliable evidence, yet has not been used in the applications in 
the domain of dermatology so far. ProtoPNet [25] is a prototype-based 
interpretable deep learning-based multi-class image classifier that was originally 
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developed for bird classification. The ProtoPNetis improved in [26] for medical 
imaging by introducing fine annotation loss and replacing max-pooling in 
ProtPNet by top-k average pooling to reduce each similarity map to a single 
similarity score. This approach has been applied to classify Mass Lesions in 
Digital Mammography and achieved an overall accuracy of 83%. In this work, we 
have made the following contributions: 
 

●  Developing an interpretable deep learning-based multi-label classifier to 
identify the key features mentioned in the seven-point checklist for a given 
skin lesion. 

●  Extending the ProtoPNet model which has originally been made for multi-
class classification to support multi-label classification along with an 
improved version of the loss function. 

●  Providing human-understandable prototype-based evidence for the 
identification of dermoscopic features. 
 
To the best of our knowledge, this is the first attempt to bring out a 

combination of the seven-point checklist, multi-label classification and prototype-
based interpretability for diagnostic assistance in dermatology. The prototype-
based explanation expected by our model for a dermoscopic image of a skin lesion 
will be as given in Figure 1. 

 

Fig. 1 Prototype based explanation expected by our model for a sample 
classification made by it for a melanoma Positive Skin lesion 

II. METHODS AND MATERIALS 

A. Dataset and preprocessing 

The Derm7pt [10] dataset which comprises image data along with the 
metadata related to 1011 skin lesions was used for this work. We have built our 
dataset by extracting the dermoscopic images provided in the Derm7pt and 
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classifying it mainly into seven classes and then into subclasses under each 
category. It is based on the seven-point criterion, also known as the seven- point 
checklist, a criterion introduced by Glasgow to help non-dermatologists identify 
dermoscopic features that contribute to possible melanoma. Each of the features 
has been assigned a score and the total score based on the presence or absence of 
these features will be used to determine if a skin lesion is malignant or benign. 

Before being used for further steps, Image data was resized into 224 × 224 
images and normalized and then categorized as given below. The data was split as 
the training set and test set in the 70:30 ratio for training and testing purposes. 
Table2 shows how we have formatted the dataset to align with our requirements. 

 
TABLE. 2 Dataset Summary 

 
Dermoscopic feature Classes ( Derm7pt) Classes (Our dataset) 

Pigment Network (PN) 

 

Absent (400), Typical (381), 
Atypical (230) 

 

Absent (400), Typical (381), 
Atypical (230) 

Blue Whitish Veil (BWV) 
 

Absent (816), Present (195) 

 

Absent (816), Present (195) 

Vascular Structures (VS) 

 

Absent (823), Arborizing (31), 
Comma (23), Hairpin (15), 

Within regression (46), Wreath 
(2), Dotted (53), Linear regular 

(18) 

- 

Pigmentation (PIG) 

 
Absent (588), Diffuse regular 

(115), Localized regular (3), 
Diffuse irregular (265), Localized 

irregular (40) 

Absent (588), Regular (118), 

Irregular (305) 
 

Streaks (STR) 
 

Absent (653), Regular (107), 

Irregular (251) 

 
Absent (653), Regular (107), 

Irregular (251) 

Dots and Globules (DaG) 

 

Absent (653), Regular (107), 

Irregular (251) 

 

Absent (653), Regular (107), 

Irregular (251) 

Regression Structures (RS) 

 

Absent (758), Blue areas (116), 
White areas (38), Combinations 

(99) 

Absent (758), Present (253) 
 

 
In our research due to lack of sufficient samples, we excluded the vascular 

structures, and combined a few other categories into one. 

B. Proposed Approach 

We have extended the ProtoPNet [25] architecture to extract dermoscopic 
features. The main improvements are multi-label classification support and use of 
topmost-k average pooling instead of max pooling when computing the similarity 
score. The use of topmost-k average pooling was inspired by IAIA-BL [26]. 

As shown in Figure 2, the proposed interpretable model is composed of a 

sequence of convolutional layers𝑓, prototype layers 𝑝, and fully connected layers 
h. The expected input to the model at the test time is a skin lesion image. During 
training, apart from skin lesion image, a multi-label label-encoded feature vector 
which consists of 6 main criteria given in the seven-point checklist each indicating 
the class index of either absence, presence, or the sub-type of the dermoscopic 

feature is also provided. The convolutional layers 𝑓 used in our model are from the 
ResNet-152 [27] network pre-trained on ImageNet [28], and it extracts meaningful 
convolutional featuresto perform classification from a dermoscopic image. 
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Following the convolutional layers 𝑓, the prototype layer 𝑔 contains 𝑚 

prototypes, 𝑃 =  (𝑃𝑗 )𝑗=1
𝑚  learned from the training set. 𝑃 stands for the whole set of 

prototypes learned for each dermoscopic feature while 𝑃𝑗  represents a prototype of 

a dermoscopic feature. For an example if we enforced the model to learn 3 

prototypes per each dermoscopic feature, then 𝑃0, 𝑃1, 𝑃2 will represent the 
prototypes for the first dermoscopic feature,𝑃3, 𝑃4, 𝑃5 will represent the prototypes 
for the second considered dermoscopic feature and so on. Here it is to be noted 
that each prototype represents a pattern of prototypical activation in a 
convolutional output feature maps’ patch, which will then correlate to a patch of 

an original image. As a result, each learned prototype 𝑃𝑗  can be considered as a 

representation of a unique dermoscopic feature. The model intends to learn 
prototypes only for the presence of dermoscopic features leaving the absence cases 

to be handled at the last layer  that is composed of multiple fully connected 
layers corresponding to each criterion in the seven-point checklist. 

 

 

Fig. 2 Overview of proposed interpretable model architecture 

 
For a given image 𝑥, the model first extracts the convolutional feature 

maps𝑓(𝑥)and then using the prototype layer𝑔it computes a patch specific 

similarity distance 𝑑𝑗 ,𝑖considering the squared Euclidean distances between each 

 1 × 1 patches of convolutional feature maps 𝑓(𝑥)and each learned prototype 𝑃𝑗  

using Eq. 1 same as used in [26]. Next using Eq. 2 same as used in [26], the patch 

specific similarity distance 𝑑𝑗 ,𝑖are converted into a patch specific similarity score 

𝑠𝑗 ,𝑖. 

𝑑𝑗 ,𝑖 =  𝑧 −  𝑃𝑗 2

2
     (1) 

 

𝑠𝑗 ,𝑖 =  log
𝑑𝑗 ,𝑖+1

𝑑𝑗 ,𝑖+ 𝜀
     (2) 
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where 𝑖 is the index of the 1 × 1patches of the14 × 14convolutional feature maps  

𝑓(𝑥)and 𝑧 is the 𝑖𝑡1x1 patch of convolutional feature maps 𝑓(𝑥). 
The outcome of the prototype layer 𝑔 is a similarity activation map which 

shows how prominent a prototypical part is in the image. This activation map 
retains the spatial relationship of the convolutional outputs and is later 
upsampled to the input image’s scale to provide an overlaid similarity map that 
displays which part of the input image is most aligned with the learned prototype. 

Unlike ProtoPNet [25], our model takes into account the top 10% (i.e., 𝑘 =  
10

100
×

(14 × 14)  ∼ 19  ) of the most activated convolutional patches that are closest to 
each prototype, rather than just the topmost activated patch as in ProtoPNet [25]. 
Using topmost-k average pooling inspired by IAIA-BL [26] as in Eq. 3, the 

activation map of patch-specific similarity scores obtained for prototype 𝑃𝑗  is then 

condensed to an image-specific similarity score 𝑆𝑗 . The topmost-k average pooling 

represented by 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑜𝑜𝑙 (𝑡𝑜𝑝𝑚𝑜𝑠𝑡_𝑘( [𝑠𝑗 ,𝑖]𝑖=1 
14×14 , 𝑘 ))is computed by taking into 

account the average of highest k patch-specific similarity scores. This indicates 
how prominent a particular feature can be widely spread in the skin lesion, which 
is a quite common occurrence for some of the features that we have considered. 

 

𝑆𝑗 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑜𝑜𝑙 (𝑡𝑜𝑝𝑚𝑜𝑠𝑡_𝑘( [𝑠𝑗 ,𝑖]𝑖=1 
14×14 , 𝑘 ))   (3) 

 

Following the computation of all image-specific similarity scores 𝑆𝑗   for 

each prototype 𝑃𝑗  , the last layer  composed of multiple fully connected layers 

followed by softmax layers were utilized to determine the probability of presence or 
absence of each sub-type of dermoscopic features. Finally, for each criterion, the 
class (i.e., either absent class or a sub-type of the dermoscopic feature) which has 
the highest probability is considered as an exact match for that criterion. The 
interpretability on the identification of dermoscopic features is then provided 
using the overlaid similarity map, together with the prototype. 

During the training stage, the model seeks to learn a meaningful latent 
space, where the most significant patches for identifying dermoscopic features are 
clustered around semantically similar prototypes of the relevant classes while 
ensuring a good separation between clusters of different classes.  In our research, 
the optimization problem is defined slightly differently than in [25] & [26], due to 
the fact that we support multi-label classification. The modified optimization 
problem is, 

 

𝜃, 𝑃 
1

𝑛
 

1

𝑛𝑙
 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦  𝑙  .  𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑜𝑜𝑙 . 𝑡𝑜𝑝𝑚𝑜𝑠𝑡_𝑘.  𝑔 .  𝑓 𝑥𝑖  , 𝑦𝑖 𝑙  

𝑛𝑙
𝑙=1

𝑛
𝑖=1   +

  𝜆1𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑠𝑡 +  𝜆2𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡     (4) 
 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑠𝑡 =  
1

𝑛
 

1

𝑛𝑙
 min𝑗 :𝑐𝑙𝑎𝑠𝑠  𝑃𝑗  = 𝑦𝑖[𝑙](

1

𝑘
 𝑚𝑖𝑛𝑘𝑧 ∈ 𝑝𝑎𝑡𝑐 𝑒𝑠(𝑓(𝑥𝑖)) ( 𝑧 − 𝑃𝑗 2

2
))

𝑛𝑙
𝑙=1

𝑛
𝑖=1  (5) 

 

𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡 =  −
1

𝑛
 

1

𝑛𝑙
 min𝑗 :𝑐𝑙𝑎𝑠𝑠  𝑃𝑗  ≠ 𝑦𝑖[𝑙](

1

𝑘
 𝑚𝑖𝑛𝑘𝑧 ∈ 𝑝𝑎𝑡𝑐 𝑒𝑠(𝑓(𝑥𝑖)) ( 𝑧 − 𝑃𝑗 2

2
))

𝑛𝑙
𝑙=1

𝑛
𝑖=1

 (6) 
 

where 𝜃 represents the parameters of the convolutional layers, 𝑛 is the number of 

images, 𝑛𝑙 is the number of labels, in our case it is the 6 criterias in the seven-

point checklist, 𝑦𝑖[𝑙] is the index of the sub-type dermoscopic feature specific to 𝑙𝑡  

criteria in the seven-point checklist for the 𝑖𝑡 image, (
1

𝑘
 𝑚𝑖𝑛𝑘𝑧 ∈ 𝑝𝑎𝑡𝑐 𝑒𝑠(𝑓(𝑥𝑖)) ( 𝑧 −

𝑃𝑗 2
2)  gives the average of the minimum 𝑘 patch specific similarity distances, 𝜆1  

and 𝜆2  are constants. Differing from [25] & [26] in our work we implemented the 
cluster cost Eq. 5 such that the model learns at least one prototype for each sub-



Int. J.Adv.Sig.Img.Sci, Vol. 8, No. 1, 2022 

 

47 
 

type dermoscopic feature that comes under each criterion specified in the seven-
point checklist from the training image dataset. 

III. RESULTS AND DISCUSSIONS 

In this work, our main focus is to evaluate the applicability of the 
prototype-based interpretability approach to the field of dermatology. Hence, the 
model’s performance was assessed quantitatively as well as qualitatively. Due to 
the presence of class imbalance in the dataset, we used the evaluation metric F1-
score as in Eq. 9 to quantify the model’s performance and for the qualitative 
evaluation, we relied on the dermatologist’s expertise to validate the learned 
prototypes. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒  𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒  𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠  + 𝐹𝑎𝑙𝑠𝑒  𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
    (7) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒  𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒  𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠  + 𝐹𝑎𝑙𝑠𝑒  𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
     (8) 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  + 𝑅𝑒𝑐𝑎𝑙𝑙
     (9) 

 
At the time of training, we enforced the model to learn three prototypes for 

each subcategory of each dermoscopic feature listed out in the seven-point 
checklist. Figure 3 depicts the overall performance of our model in terms of 
quantitative analysis while Figure 4 and Figure 5 show few of the learned 
prototypes classified based on the dermatologist’s verification. According to 
dermatologist verification, 27% of the overall learned prototypes are accurate, 
while 73% of the prototypes are either from healthy skin regions or incorrect 
prototypes learned from the skin lesion region. Further, 27% of all incorrect 
prototypes come from healthy skin areas. This emphasizes the necessity of 
enforcing the model to focus solely on the skin lesion region to enhance the 
model’s performance in learning accurate prototypes. 

 
 

Fig. 3 Overall performance of the proposed model 
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Fig. 4 Few learned accurate prototypes in the original image are 
represented by the top line, while the corresponding prototypical activation 
is represented in the bottom line. (a) Typical pigment network (b) Atypical 

pigment network (c) Presence of regression structures (d) Regular streaks (e) 
Irregular streaks  

 

 

Fig. 5 Few learned inaccurate prototypes in the original image are 
represented by the top line, while the corresponding prototypical activation 
is represented in the bottom line. The inaccurate prototypes are from both 
skin lesion region as well as from healthy skin region and according to our 

model, (a) Irregular dots and globules (b) Atypical pigment network (c) 
Irregular streaks (d) Blue whitish veil (e) Regular pigmentation (f) Regular 

dots and globules. 

 
To demonstrate how our model performs reasoning, we fed the model a 

dermoscopic image of a melanoma skin lesion. Figure 6 depicts the model’s 
classifications for that melanoma skin lesion, as well as evidence for each 
classification. As previously stated, here the evidence is provided in the form of a 
heatmap overlayed on the original image, indicating the region that is highly 
similar to the learned prototype. Consider the first row, which represents the blue 
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whitish veil. Because the region highlighted in red in the fed melanoma skin lesion 
looks almost identical to the region bounded by the red box in the learnt prototype 
for blue whitish veil, the model concludes that the blue whitish veil is present in 
the skin lesion. The same strategy was used to justify the identification of the 
remaining features as well. 

 

Fig. 6. Classification explanation generated by our model for a melanoma 
skin lesion test image 

 
In order to compare our approach with the state-of-the-art approach for 

interpretable machine learning, we used the LIME [29] library on a deep learning 
model that uses ResNet152 [27] to identify the presence of the Blue Whitish Veil 
dermoscopic feature which is present in the seven-point checklist in skin lesions. 
The Derm7pt [10] dataset was used for this model. The model performed with an 
overall accuracy of 56.71%. Compared to the F1-score of our work for the Blue 
Whitish Veil feature which is 0.87 and 0.57 for the absent and present classes 
respectively, our prototype-based model has outperformed the typical deep 
learning classifier we used for the LIME [29] based approach by 0.18 and 0.31 for 
the absent and present classes respectively. Although the model outperforms the 
classical classifier in this case, there are deep learning-based classifiers built for 
melanoma identification that perform better than our interpretable model 
presented by previous research works as well [11-12]. Figure 7 shows a 
classification explanation provided by each model for a melanoma skin lesion. 
Here the explanations provided by a LIME [29] based image classifier can be 
visualized as an overlay along with the image samples or in several other similar 
ways 



Int. J.Adv.Sig.Img.Sci, Vol. 8, No. 1, 2022 

 

50 
 

 

Fig. 7. Prediction explanation generated from a LIME based model and our 
model for a melanoma skin lesion. The explanation from our model which 
uses a learnt prototype for explanation is more descriptive compared to 

LIME. 

Green color masks in Figure 7 show that the parts of the image that might 
have contributed to the classified class label and the parts of the image masked in 
red might have contributed to the classification negatively. Unlike our prototype-
based approach, the LIME [29] based model that we built for the detection of Blue 
Whitish Veil dermoscopic feature’s presence only highlighted the areas of the skin 
lesion where the feature might be available and where it might not be available 
without any prototypes to support the dermatologist analyze the correctness of the 
classification.  

IV. CONCLUSION 

Interpretable outputs of a machine learning model are of utmost 
importance for medical diagnostics because it allows the medical practitioners to 
understand the reasoning behind the decision produced by such a diagnostic 
support tool. This work aims to introduce prototype-based interpretability for 
machine learning based diagnostic assistance for melanoma, which is one of the 
deadliest skin diseases that prevail among people worldwide. Here, a prototype 
refers to an example derived from the training data that looks similar to what the 
model tries to predict. During the comparison with LIME, another popular 
approach to achieve interpretability, we observed that our model provides more 
descriptive and meaningful explanations. In order to improve the performance of 
the model i.e., to get more informative prototypes more consistently, we believe a 
segmentation step before the prototype extraction step (which needs segmentation 
labels to learn the boundary of the lesion) would be helpful. 
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