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Abstract: The emergence of High Resolution Computed Tomography (HRCT) 
images of the lungs clearly shows the parenchymal lung architecture and thus 
the quantification of obstructive lung disease becomes most accurate. In this 

study, an automated system to diagnose obstructive lung disease called 
emphysema is presented using HRCT images of the lungs. The kind of texture 
information that ideally can be extracted from HRCT images depends on the 
multi-resolution representation system. The proposed Pulmonary Emphysema 
Analysis (PEA) system employs Shearlets as it can extracts more texture 
information than wavelets in different directions and levels. Radial Basis 
Function Network (RBFN) is employed for the classification of HRCT images 
into three categories; Normal Tissue (NT), Paraseptal Emphysema (PSE) and 
Centrilobular Emphysema (CLE). Results prove that a confident diagnosis of 
pulmonary emphysema is established to help clinicians which will also 
increase the precision of diagnosis. 

Keywords: Pulmonary emphysema, shearlets, computed tomography, 
pulmonary diseases, neural network. 

I. INTRODUCTION 

Today's non invasive medical diagnosis based on images from different 

imaging modalities is increasingly. The problem of computerized diagnosis system 
has received considerable interest in the literature where the uses of various 

techniques are addressed. Local Binary Pattern (LBP) based texture approach is 

employed in [1] for the quantitative measures of emphysema in HRCT images. It 

uses the following texture features; intensity histograms, LBP and joint LBP. k-

Nearest Neighbour (kNN) is used as classifier with histogram dissimilarity distance 
measure. 

A texton based approach is discussed in [2] for the classification of 

emphysema. It has the following stages; codebook generation, learning texton 

histograms and testing. The former one uses a K-Means Clustering (KMC) 

algorithm for the construction of codebook and the later stages uses Support 

Vector Machine (SVM) and kNN for the classification. The same procedure is used 
in [3] with multiple classifiers to improve the classification accuracy. The 
parameters such as k in KMC algorithm and texton size are varied for 

performance evaluation.  

Gaussian Markov Random Field (GMRF) is discussed in [4] for emphysema 

quantification. Before extracting the GMRF parameters, supervised tissue 

segmentation is employed. The local distributions of spatially varied parameters of 
GMRF are estimated and represented by normalized histograms as texture 
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features. The conventional Gabor filter is extended for emphysema classification in 

[5]. It uses LBP and various statistical features from the Gabor coefficients at 
different orientation bands. After extraction, kernel fisher analysis is used for 

dimension reduction and kNN is used for the classification. 

Convolution Neural Network (CNN) is utilized in [6] for emphysema 

classification. It has a single unit for feature extraction and recognition of different 

emphysema patterns. Features are extracted from multi layers of CNN and back 
propagation learning algorithm is used. Feature ensemble approach is employed 

for emphysema classification in [7]. It consists of intensity histogram, mean 

difference technique and log-Gabor filters. These features are concatenated and 

then reduced by Principal Component Analysis (PCA). Random forest classifier is 

used as a classifier. 

Structural co-occurrence based features are discussed in [8] for 
emphysema quantification. It analyzes the relationship between two signals in n-

dimensional space based on the low-level structures. From the relationship, 

different attributes such as inverse difference moment, entropy, and 

complementary absolute difference are extracted and SVM classifier is used for 

the classification. Wavelet transform based emphysema classification is discussed 
in [9]. After decomposing at 5-levels, histogram is constructed and the feature 

space is reduced by probabilistic PCA. For classification, kNN, and artificial neural 

networks are used. 

   

  Fractal Dimension (FD) based emphysema classification is described in 

[10]. The box counting method and holder exponent are applied to calculate the 
FD of HRCT images. The patterns are detected using ANOVA statistical analysis. 

Fuzzy decision tree based emphysema classification is discussed in [11]. The local 

diagonal exterme pattern is used as features and particle swarm optimization is 

used to partition the feature space. A local diagonal Laplacian pattern is 

introduced in [12] for emphysema classification. The distance between the 
histograms of the each pattern is computed and analyzed by ANOVA method. LBP 

based system is discussed in [13] with the help of SVM classifier for emphysema 

classification. Three types of LBP are used instead of local LBP and also statistical 

measurements are used as features. 

 

In this study, an automated system to diagnose pulmonary emphysema is 
presented with the help of HRCT images. The salient features of the PEA system is 

the use of Shearlets to extract statistical as well as concurrence descriptors. Also, 

RBFN is utilized to work with these two sets of features. The organization of this 

research article is as follows: In section 2, the flow of PEA system along with 

Shearlet features and RBFN classification are explained in detail. The obtained 
results and discussions about the performances of PEA system are given in 

section 3.The last section concludes the proposed classification system.  

II. METHODS AND MATERIALS 

 One of the most important factors that affect the results of a screening 

program is the performance of the clinicians, in interpreting appropriately the 
visual information presented on the imaging modalities. The probability of 

observer error is high, due to the incidence of abnormality being very low and the 

minimum variation of structures between normal and abnormal tissues. To 

overcome this, PEA system is designed in this work for the classification of lungs 

tissues from HRCT lung images. Figure 1 shows the overview of PEA system. 
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Fig. 1 Overview of PEA system 

 The proposed PEA system is very similar to the conventional image 

analysis methods by focusing on feature extraction and classification. The feature 

extraction method includes Shearlets based image representation algorithm 
followed by a statistical and concurrence feature extraction from its representation. 

Then, a pattern recognition technique using RBFN is applied to classify the 

suspected tissue regions into NT, PSE and CLE. The following sub-section 

discusses Shearlets based feature extraction and RBFN based classification briefly. 

A. Shearlets Based Feature Extraction 

Wavelet transform [14] has the ability to detect pointwise singularities in 
signals effectively. Due to its isotropic support, it fails to capture the geometric 

regularity along the surfaces. Several techniques are discussed in [15-16] to 

exploit the anisotropic regularity of a surface. Among them Shearlets [17-18] 

provides nearly optimal approximation. The main advantage of affine systems is 

the ability to combine the geometry and multi-scale analysis. The form of affine 

system is as follows: 
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Figure 2 shows the frequency domain induced by Shearlets on the cone.  
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Fig. 2 Frequency domain of Shearlets 

The important features used in many medial image analysis systems [19-

20] which uses are energy and entropy features. Also, the spatial information's are 
described by the co-occurrence features. These two set of features are combined 

for tissue classification linearly using HRCT lung image. Table 1 shows the 

extracted features. 

TABLE 1 Description of features 

Features Description 

Statistical features 

Entropy 
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SS represents the Shearlets sub-band of size M x N 

co is the normalized co-occurrence matrix of SS.. 
SS coordinates are represented by (m,n). 

Pn is the probability with gray level n 

 

A total of 5 features described in table 1 are extracted from each sub-

bands after representation by Shearlets filters. As it provides more directional 
sub-bands than wavelets, more features are extracted at each level that depends 

on the number of directions. Thus, more discriminating features can be extracted 

by using Shearlets based representation system. These features are then classified 

using RBFN. 
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B. Classification using RBFN 

The sets of features obtained from the previous step are used to build 

RBFN classifier [21]. The RBFN classifier is a kind of neural network with a 

structure similar to conventional neural networks built to estimate the conditional 

probability density functions, )( iwxP , for each class iw . Each density is 

estimated as a finite mixture of uncorrelated Gaussians ),;( jjxG   centered at 

j and with a diagonal covariance matrix of components j  

 





M

j
jjj xGWwxP

1

),;()(      (4) 

 
where Wj is the weight associated with the jth component of the mixture. The 

network is then trained using the log-likelihood as an optimality criterion. Such a 

network is shown in Figure 3.  

 

 
Fig. 3 Block diagram of RBFN 

 The number M of hidden neurons of the power density function 

approximating network is selected using a method referred to as Maximum 

Penalised Likelihood (MPL).  
 

PenaltylikelihoodlogMPL     (5) 

N

Ndp

2

log
-Penalty       (6) 

 
where p is the total number of parameters to be estimated, d is the data 

dimensionality and N is the number of training samples. 
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 Once the densities, )( iwxP have been estimated, the classifier is built 

through the usual Bayes rule. For the two class problem, w = 1,2, the classifier is 

built as shown in Figure 4.  
 
 
 
 
 

 

 

 

Fig. 4 Bayes decision rules  

 Having an estimate of the power density functions not only defines a 
decision boundary between the two classes, but it also gives an insight about the 

data structure. It allows us to identify the presence of outliers: points that should 

neither be classified as normal, nor as abnormal, because there is little evidence 

that they come from either class. In order to detect possible outliers, two 

thresholds have been defined; 

)(min 11 1
wxPT

wXxw      (7) 

)(min 22 2
wxPT

wXxw      (8) 

Where 2w
X and 2w

X  are the training sets for the two classes. The definitions for 

outliers are given below: 

 

 2211 )()( ww TwxPandTwxP      (9) 

III. RESULTS AND DISCUSSION 

The performance of PEA system is evacuated using freely available HRCT 

images from Computed Tomography Emphysema Database (CTED) [1] images. 

These images are acquired using general electric equipment. CTED consists of 115 

HRCT slices of upper, middle and lower part of lungs of 39 subjects. Among 39 

subjects, 30 are smokers and 9 are never smokers. These images are assessed by 
a CT pulmonologist and a chest radiologist and the leading patterns such as NT, 

PSE and CLE are marked as ground truth data. A total of 168 patches with a 

resolution of 61x61 pixels are readily available in CTED for performance 

evaluation. Table 2 gives the details of CTED briefly and Figure 5 shows sample 

images in CTED containing NT, PSE and CLE patterns. 

   
TABLE 2 Description of CTED  

#total images 
#patch resolution 

(pixels) 

Observations 

#PSE #CLE #NT 

168 61x61 59 50 59 

 

Training set 

of Class 1w  

Training set 

of Class 2w  

RBFN with 

1m  neurons 

RBFN with 

2m  neurons 

)(1 wxP

)(2 wxP

)()()()( 2211 wxPwPwxPwP
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(a) (b) (c) 

 
Fig. 5 Sample image in CTED (a) NT (b) CLE (c) PSE 

The RBFN classifier is evaluated using Leave-One-Out (LOO) error 

estimation on the HRCT images in the CTED. In the LOO method, one sample is 
excluded from the training set and the classifier is designed using the remaining 
N-1 samples. The excluded sample is then used for testing the RBFN classifier. 

This operation is repeated N times to test all the training samples. The number of 

misclassified samples is counted to obtain an estimate of the error. Since each 

test image measurement is excluded from the design sample set, the 

independence between the design and test sets is maintained. The number of 

correctly classified samples is then counted to obtain an estimate of the RBFN 
performance. Based on the outputs, confusion matrices are drawn.  

 

 

TABLE 3 CM and performance metrics for 1-Level Shearlets features  

Shearlets  

Directions 
Pattern #PSE #CLE #NT 

Accuracy Sensitivity Specificity 

2 

#PSE 44 9 6 80.95 74.58 84.40 

#CLE 9 34 7 80.95 68.00 86.44 

#NT 8 7 44 83.33 74.58 88.07 

Average  81.75 72.38 86.31 

4 

#PSE 48 7 4 85.71 81.36 88.07 

#CLE 6 39 5 86.90 78.00 90.68 

#NT 7 4 48 88.10 81.36 91.74 

Average 86.90 80.24 90.16 

8 

#PSE 51 3 5 89.88 86.44 91.74 

#CLE 4 42 4 91.67 84.00 94.92 

#NT 5 3 51 89.88 86.44 91.74 

Average 90.48 85.63 92.80 

16 

#PSE 48 4 7 87.95 81.36 91.59 

#CLE 3 40 4 90.36 85.11 92.44 

#NT 6 5 49 86.75 81.67 89.62 

Average 88.35 82.71 91.22 
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TABLE 4 CM and performance metrics for 2-Level Shearlets features  

Shearlets  

Directions 
Pattern #PSE #CLE #NT 

Accuracy Sensitivity Specificity 

2 

#PSE 46 8 5 83.33 77.97 86.24 

#CLE 8 36 6 83.33 72.00 88.14 

#NT 7 6 46 85.71 77.97 89.91 

Average  84.13 75.98 88.09 

4 

#PSE 50 7 2 86.90 84.75 88.07 

#CLE 6 41 3 89.29 82.00 92.37 

#NT 7 2 50 91.67 84.75 95.41 

Average 89.29 83.83 91.95 

8 

#PSE 53 3 3 93.45 89.83 95.41 

#CLE 2 44 4 92.86 88.00 94.92 

#NT 3 3 53 92.26 89.83 93.58 

Average 92.86 89.22 94.64 

16 

#PSE 50 4 5 89.76 84.75 92.52 

#CLE 3 42 2 92.17 89.36 93.28 

#NT 5 4 51 90.36 85.00 93.40 

Average 90.76 86.37 93.07 

 

TABLE 5 CM and performance metrics for 3-Level Shearlets features  

Shearlets  

Directions 
Pattern #PSE #CLE #NT 

Accuracy Sensitivity Specificity 

2 

#PSE 50 6 3 88.10 84.75 89.91 

#CLE 6 40 4 88.10 80.00 91.53 

#NT 5 4 50 90.48 84.75 93.58 

Average  88.89 83.16 91.67 

4 

#PSE 54 4 1 91.67 91.53 91.74 

#CLE 4 44 2 94.05 88.00 96.61 

#NT 5 0 54 95.24 91.53 97.25 

Average 93.65 90.35 95.20 

8 

#PSE 58 1 0 98.81 98.31 99.08 

#CLE 1 49 0 98.81 98.00 99.15 

#NT 0 0 59 100.00 100.00 100.00 

Average 99.21 98.77 99.41 

16 

#PSE 56 2 1 94.67 94.92 94.55 

#CLE 3 46 1 95.27 92.00 96.64 

#NT 3 2 55 95.86 91.67 98.17 

Average 95.27 92.86 96.45 
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TABLE 6 CM and performance metrics for 4-Level Shearlets features  

Shearlets  

Directions 
Pattern #PSE #CLE #NT 

Accuracy Sensitivity Specificity 

2 

#PSE 48 7 4 85.71 81.36 88.07 

#CLE 7 38 5 85.71 76.00 89.83 

#NT 6 5 48 88.10 81.36 91.74 

Average  86.51 79.57 89.88 

4 

#PSE 52 5 2 89.88 88.14 90.83 

#CLE 4 43 3 92.26 86.00 94.92 

#NT 6 1 52 92.86 88.14 95.41 

Average 91.67 87.42 93.72 

8 

#PSE 55 1 3 95.24 93.22 96.33 

#CLE 2 46 2 95.83 92.00 97.46 

#NT 2 2 55 94.64 93.22 95.41 

Average 95.24 92.81 96.40 

16 

#PSE 52 2 5 92.77 88.14 95.33 

#CLE 1 44 2 95.18 93.62 95.80 

#NT 4 3 53 91.57 88.33 93.40 

Average 93.17 90.03 94.84 

 

 It is evident from Tables 3 to 6, the features from Shearlets provides 

99.21% accuracy for emphysema classification when the features are from 8 

directions of 3rd level. To visually analyze the performance of PEA system, the 

maximum results obtained from each Shearlets level are plotted in Figure 6. 

  

Fig. 6 Maximum performance of PEA system at each level 

 From the results, the PEA system acts as a second reader, resulting in a 

reduction of the number of expert radiologists where double reading is the current 
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practice. The system has the ability to prompt three kinds of abnormalities and 

robust to provide the second opinion for an expert radiologist in analyzing HRCT 
lung images for pulmonary emphysema. 

IV. CONCLUSION 

In this work, HRCT medical image interpretation is considered and the 

method of Shearlets and RBFN are employed as a possible solution for the 

classification of pulmonary emphysema. The extended directional decomposition 
of the lungs is obtained using Shearlets. From the Shearlet representation with 

various levels and directions two sets of features; statistical and co-occurrence 

features are extracted. The LOO error estimation is used to analyze the 

performance of RBFN classifier with 168 images. Results confirm the reliability of 

the classification system to classify the HRCT images into three classes: NT, PSE 
and CLE with an average accuracy of 99.21%. In addition, the structural 

information in various directional sub-bands improves the discriminating power of 

the RBFN classifier. The PEA system performs well as an experienced radiologist 

that improve the observer's performance and in such a case, the necessity for 

double reading will be reduced. 
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