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Abstract:  The COordinate Rotation DIgital Computer (CORDIC) algorithm is 
an efficient algorithm to calculate the iteratively phase and magnitude or the 
vector rotations in linear, hyperbolic and circular coordinate system. The 

existing CORDIC method takes less clock frequency with high delay. To 
overcome this problem, a new version of updated parallel and pipelined 
architecture is designed without degrading the performance. It provides 
highest maximum frequency with less delay by splitting the critical path into 
several smaller delay paths with enhanced circuit processing time. The 
designed architecture in this study can be used in navigation application. This 
method is implemented in the Xilinx ISE tool. 
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I. INTRODUCTION 

In June 1956, the CORDIC algorithm and a computerized design for 
executing CORDIC algorithm introduced to Convair management as a technical 

report. During the preparation of the report, it was realized by VOLDER that the 

same computerized design could be comfortably alter to generate, logarithmic 

functions, hyperbolic coordinate rotation and exponential expressions. In [1] 

different characteristics of CORDIC algorithm are described. Also, it is 
implemented in the Field Programmable Gate Array (FPGA) processor. In [2] 

CORDIC rotator algorithm is described by setting the scale factor constant in 

order to perform the iteration. It offers 50% reduction in iteration.  

In [3], a modified CORDIC algorithm with a new attractive Fast Fourier 

Transform (FFT) is described. It is used in the opposite ends of the computer 

power spectrum. In [4], the architecture of FPGA implementation and optimization 
measures is described according to hardware sources, angular coverage and 

computing precision of the algorithm. The speed and accuracy of this algorithm is 

high.  

In [5], a serial pipelined FFT on FPGA using CORDIC algorithm is 

described. To enhance the performance of FFT, it utilizes the pipelined structure, 
dual port structure and radix-2 decimation in time. In [6], three reconfigurable 

CORDIC designs; CORDIC that works either hyperbolic circular in rotation mode, 

CORDIC that works both hyperbolic and circular in vectoring mode and CORDIC 

that work in both hyperbolic and circular in any mode are described. 
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 In [7], a design of direct digital synthesizer utilizing CORDIC algorithm is 

discussed. It is programmed into FPGA for verification. In [8], an enhanced mixed 
scaling rotation CORDIC algorithm is described. It offers higher signal to noise 

ratio performance by amplifying the factor by multiplying the rational sequence to 

the equivalent signed-power-of-two conditions. 

 In [9], a reduced memory CORDIC architecture with pipeline is described. 

It can be used for any radix size FFT and this avoid the storing the angles and 
twiddle factors. In [10], a complex 128 point FFT processor utilizing rolling back 

and parallel method is described. This method provides fast speed with low power.  

In [11], a power of two point discrete cosine transform based CORDIC 

algorithm is described. It overcomes the lack of synchronization problem by 

reusing the uniform processing cell. In [12], a FFT design using radix 2/4/8 with 

single path delay feedback structure is described. It includes complex multipliers 
that contains 3 real multiplications and decreased cosine/sine tables. 

In this paper, a parallel-pipelined architecture for CORDIC algorithm is 

presented. The organization of this paper is as follows: The methods and materials 

used in this study are explained in section 2. Section 3 gives the results and 

discussion and section 4 describes the conclusion.   

II. METHODS AND MATERIALS 

 The hardware implementation of CORDIC arithmetic is shown in Fig. 1. It 
consists of three inputs X, Y and Z and also a look up table to store the values of 

tan-12-i and two shifters to supply the values 2-iX and 2-iY. Here all the 

multiplication operations are converted to simple shift operations. At the start of a 

calculation of initial values that are fed into the register by the multiplexer 
wherever the MSB of the stored value within the Z-branch determines the 

operation mode for the adder-subtractor. The signals of X and Y branch passes 

the shift units and then they are added to or subtracted from different path of 

non-shifted signals. Sine and Cosine waveforms are directly given by the CORDIC 

algorithm which acts as a quadrature phase-to-amplitude converter [13].  

 

 
                                                         

 

 

 

 
 

 

 

 

 

 
 

 

Fig.1. Iterative Architecture of CORDIC 

 

The hardware structure of the parallel CORDIC architecture is shown the 
Fig. 2. It is a data-driven circuit. The numbers of iterations performed is based on 
the precision of the bits required. Thus „n‟ number of iterations is required for „n‟ 

bits of precision. Moreover, „n-1‟ sets of are required for „n‟ bits of precision. So, 
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3(n-1) adder/subtractor circuit, 2 (n-1) Shifters circuits are required. The various 

components required in one set or each iteration is:  
• 3 Adders/Subtractors 

• 2 Shifters 

• 1 look-up-table    

 

 
 

 

Fig.2 Parallel Architecture of CORDIC 

 
The proposed parallel pipelined architecture is shown in Fig. 3. Previously 

the circuit was dependent on data-driven property. But now with the presence of 

register in middle of stages, it has changed to clock driven based circuit. Thus, the 

stages are now independent and are not adjacent. 

 

 
 

Fig. 3 Parallel- Pipelined Architecture of CORDIC 
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If the first iteration begins at first clock cycle, the second iteration begins 

at second clock cycle, then third at third cycle and so on. As a result, the delay 
gets reduced and the speed of computation increases. But due to the registers the 

area gets increased. Consider a unit length vector with one end point at vertex and 

other at    0,1, YX . If this is rotated by an angle  , its new point will be 

    SinCosYX ,,   in Fig. 4. Thus, Cos  and Sin  can be calculated by finding the 

co-ordinates of the new point [14]. 

 
 

 

 

 

 
 

 

Fig. 4 Vector in Cartesian coordinates 

In case of the vector length not equal to unity and it is rotated by an angle 

θ and the new coordinates of the point    1,1  iYiX  in Fig. 5 of the vector after 

rotation is given by the Cartesian geometry formulas: 

 

   SinYCosXiX ii 1
    

(1) 

   CosYSinXiY ii 1
    

 (2)   

 

 

Fig. 5 Rotation of a vector 

It is clear in the above equations that the Cos term provides scaling, 

which means it reduces the magnitude of the vector as 1Cos . So, by removing 

the Cos  term from the above equations, the magnitude of the vectors is getting 

increased by the factor 1Cos as shown in Fig. 6. 

 

Fig. 6  Pseduo Rotations 
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 With the increase of i values, the values of iTan  and i  goes on decreasing. 

After each iteration the gets added or subtracted to the angle accumulator. Let z 

represents the angle accumulator.    

                                                            iii dZiZ 1                               (3) 

Thus, the equations become 

      iiYdiXiX i  21                                    (4) 

      iiXdiYiY i  21                         (5) 

Here the di term act as the deciding factor to perform the addition and the 

subtraction operation in the equations. The value of id  is nothing but the sign of 

the  1iZ .       

The different modes of CORDIC algorithms [15] are used to calculate 

different functions. There are two (2) modes: Rotation and Vector 

 CORDIC Rotation Mode 
 

In this, the sign of id  depends on the sign of the  1iZ and this which 

makes „z‟ converge to 0, and it is known as „rotation mode‟. 

            iYidiXiX i  21                   (6) 

            iXidiYiY i  21                             (7) 

                                                        idiZiZ 1                                   (8)  

In conventional CORDIC these angles are to form all other angles 45, 26.6, 

14, 7.1, 3.6, 1.8, .9, 0.4. Taking 30 degree as an example as mentioned in Table 1 

and described in Fig. 7. 

 

TABLE 1: Iteration values for rotation mode for 30o 

Iterations(i) di θi Zi Yi Xi 

0 +1 45 +30 0 0.6073 

1 -1 26.6 -15 0.6073 0.6073 

2 +1 14 +11.6 0.3036 0.9109 

3 -1 7.1 -2.4 0.5313 0.8350 

4 +1 3.6 +4.7 0.4270 0.9014 

5 +1 1.8 +1.1 0.4833 0.8747 

6 -1 0.9 0.7 0.5106 0.8596 

7 +1 0.4 +0.2 0.4972 0.8676 

 

30 = 45 -26.6+14 -7.1+3.6+1.8 -0.9+0.4 

After n iterations, 

                                                   ZSinYZCosXKnX                         (9) 

 

                                                 ZSinXZCosYKnY            (10) 
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                                                      0nZ                (11)  

 

 

 

Fig.7  Rotations for 30 degrees 

 

To avoid the storing of constant value of scaling constant in order to save 
area, we start with values as  X = 1/K [X = 0. 6072529 and Y = 0].For result with „n‟ 

bits of precision, „n‟ CORDIC iterations are necessary [16]. As Z(n) tends to „0‟, X(n) 

and Y(n) tends to ZCos and ZSin . Range of angles covered is -99.7o ≤ z ≤ 

99.7o.where 99.7o is total sum of all the angles in look-up-table. 

 CORDIC Vectoring Mode 

 The CORDIC equation becomes: 

                                                          2/22 YXKnX              (12) 

 

                      0nY             (13) 

 

                     
X

YTanZnZ 1                    (14) 

 
Figure 8 describes the vectoring mode of a point inclined at 30 degree and 

the iterative values of the process are mentioned in Table 2.     

 

 
 

Fig.8 Vectoring mode for 30 degrees 
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TABLE 2. Iteration values in Vectoring mode 

 

Iterations (i) Zi Θi Yi 

0 0 45 2 

1 45 26.6 1 

2 71.6 14 -0.5 

3 57.6 7.1 0.375 

4 64.7 3.6 -0.078 

5 61.1 1.8 0.151 

6 62.9 0.9 0.039 

7 63.8 0.4 -0.019 

8 63.4 0.2 0.009 

 

To calculate YTan 1 , at the beginning we take X = 1 and Z = 0 

However, one can take advantage of below formula to limit the range of 

fixed-point numbers encountered. 
 

            YTan
Y

Tan 12/11             (15)   

III. RESULTS AND DISCUSSION 

For verifying the results, a simulation in Xilinx of the CORDIC algorithm    
is realized and the output is shown in Fig. 9. In VHDL, all these implementations 

are designed with the help of ISE environment and ISIM simulator. The earlier 

circuits are synthesized by Xilinx spartan XC5VTX240T device. 

 

Fig. 9 Simulation Output 

The generation of input vector is done in such a way that all the four 

quadrants gets covered and standardized to have a magnitude equal to 1. For 16-
bit input, A (1,6) is the format of fixed point. As the CORDIC convergence range is 

restricted to  2/,2/  , each input vector has to be rotated by an angle of 2/ , 

moving every vector to the forth and first quadrant such that the range can be 

increased. Table 3 gives the results of comparison among the three methods- 
sequential, parallel, pipelined and parallel methods. 
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TABLE 3. Comparison of 3 Architectures 

S.NO. METHOD SLICES LUT FLIP FLOP MAX CLOCK FREQUENCY 

1. Sequential 957 1809 952 362.588 

2. Parallel 964 905 884 448.762 

3. Parallel- Pipelined 977 902 873 464.563 

 

It is inferred from Table 3 that the parallel-pipelined method has the 
highest maximum-clock frequency which is 464.563 (approx.). The length of the 

critical path of the circuit is reduced with the introduction of pipelining. Thus, 

this method has the lowest delay when compared to all three.  

IV. CONCLUSION 

In this paper, a parallel-pipelined architecture for CORDIC algorithm is 
discussed. Though there is an increase in area with the addition of registers, delay 

is reduced drastically. When compared to existing methods the parallel-pipelined 

architecture has the highest max-clock frequency. Since real time data acquisition 

is the need of the hour, this method has enormous scope in real time processing. 
It can be used in navigation applications, radar signal processors and unmanned 

aerial vehicle (UAV‟s) that require high computational speed. CORDIC is definitely 
a light at the end of the tunnel because they are used in super computers, which 

is an evolving technology.   
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