
Int. J.Adv.Sig.Img.Sci, Vol. 5, No.2, 2019

23

A PARALLEL AND PIPELINED ARCHITECTURE FOR

CORDIC ALGORITHM

Dr. Ellapan V,
Department of Electronics and Communication Engineering,

School of Electrical Engineering and Computing,
Adama Science and Technology University,

Adama, Ethiopia, Africa

ellappan.venugopal@astu.edu.et

Dr. Sam Alaric J,
Department of Electrical and Computer Engineering,

Institute of Technology, Wollega University,

Ethiopia, Africa

samalaric@gmail.com

Abstract: The COordinate Rotation DIgital Computer (CORDIC) algorithm is
an efficient algorithm to calculate the iteratively phase and magnitude or the
vector rotations in linear, hyperbolic and circular coordinate system. The

existing CORDIC method takes less clock frequency with high delay. To
overcome this problem, a new version of updated parallel and pipelined
architecture is designed without degrading the performance. It provides
highest maximum frequency with less delay by splitting the critical path into
several smaller delay paths with enhanced circuit processing time. The
designed architecture in this study can be used in navigation application. This
method is implemented in the Xilinx ISE tool.

Keywords: CORDIC Algorithm, parallel and pipelined method, Xilinx tool.

I. INTRODUCTION

In June 1956, the CORDIC algorithm and a computerized design for
executing CORDIC algorithm introduced to Convair management as a technical

report. During the preparation of the report, it was realized by VOLDER that the

same computerized design could be comfortably alter to generate, logarithmic

functions, hyperbolic coordinate rotation and exponential expressions. In [1]

different characteristics of CORDIC algorithm are described. Also, it is
implemented in the Field Programmable Gate Array (FPGA) processor. In [2]

CORDIC rotator algorithm is described by setting the scale factor constant in

order to perform the iteration. It offers 50% reduction in iteration.

In [3], a modified CORDIC algorithm with a new attractive Fast Fourier

Transform (FFT) is described. It is used in the opposite ends of the computer

power spectrum. In [4], the architecture of FPGA implementation and optimization
measures is described according to hardware sources, angular coverage and

computing precision of the algorithm. The speed and accuracy of this algorithm is

high.

In [5], a serial pipelined FFT on FPGA using CORDIC algorithm is

described. To enhance the performance of FFT, it utilizes the pipelined structure,
dual port structure and radix-2 decimation in time. In [6], three reconfigurable

CORDIC designs; CORDIC that works either hyperbolic circular in rotation mode,

CORDIC that works both hyperbolic and circular in vectoring mode and CORDIC

that work in both hyperbolic and circular in any mode are described.

Int. J.Adv.Sig.Img.Sci, Vol. 5, No.2, 2019

24

 In [7], a design of direct digital synthesizer utilizing CORDIC algorithm is

discussed. It is programmed into FPGA for verification. In [8], an enhanced mixed
scaling rotation CORDIC algorithm is described. It offers higher signal to noise

ratio performance by amplifying the factor by multiplying the rational sequence to

the equivalent signed-power-of-two conditions.

 In [9], a reduced memory CORDIC architecture with pipeline is described.

It can be used for any radix size FFT and this avoid the storing the angles and
twiddle factors. In [10], a complex 128 point FFT processor utilizing rolling back

and parallel method is described. This method provides fast speed with low power.

In [11], a power of two point discrete cosine transform based CORDIC

algorithm is described. It overcomes the lack of synchronization problem by

reusing the uniform processing cell. In [12], a FFT design using radix 2/4/8 with

single path delay feedback structure is described. It includes complex multipliers
that contains 3 real multiplications and decreased cosine/sine tables.

In this paper, a parallel-pipelined architecture for CORDIC algorithm is

presented. The organization of this paper is as follows: The methods and materials

used in this study are explained in section 2. Section 3 gives the results and

discussion and section 4 describes the conclusion.

II. METHODS AND MATERIALS

 The hardware implementation of CORDIC arithmetic is shown in Fig. 1. It
consists of three inputs X, Y and Z and also a look up table to store the values of

tan-12-i and two shifters to supply the values 2-iX and 2-iY. Here all the

multiplication operations are converted to simple shift operations. At the start of a

calculation of initial values that are fed into the register by the multiplexer
wherever the MSB of the stored value within the Z-branch determines the

operation mode for the adder-subtractor. The signals of X and Y branch passes

the shift units and then they are added to or subtracted from different path of

non-shifted signals. Sine and Cosine waveforms are directly given by the CORDIC

algorithm which acts as a quadrature phase-to-amplitude converter [13].

Fig.1. Iterative Architecture of CORDIC

The hardware structure of the parallel CORDIC architecture is shown the
Fig. 2. It is a data-driven circuit. The numbers of iterations performed is based on
the precision of the bits required. Thus „n‟ number of iterations is required for „n‟

bits of precision. Moreover, „n-1‟ sets of are required for „n‟ bits of precision. So,

Int. J.Adv.Sig.Img.Sci, Vol. 5, No.2, 2019

25

3(n-1) adder/subtractor circuit, 2 (n-1) Shifters circuits are required. The various

components required in one set or each iteration is:
• 3 Adders/Subtractors

• 2 Shifters

• 1 look-up-table

Fig.2 Parallel Architecture of CORDIC

The proposed parallel pipelined architecture is shown in Fig. 3. Previously

the circuit was dependent on data-driven property. But now with the presence of

register in middle of stages, it has changed to clock driven based circuit. Thus, the

stages are now independent and are not adjacent.

Fig. 3 Parallel- Pipelined Architecture of CORDIC

Int. J.Adv.Sig.Img.Sci, Vol. 5, No.2, 2019

26

If the first iteration begins at first clock cycle, the second iteration begins

at second clock cycle, then third at third cycle and so on. As a result, the delay
gets reduced and the speed of computation increases. But due to the registers the

area gets increased. Consider a unit length vector with one end point at vertex and

other at    0,1, YX . If this is rotated by an angle  , its new point will be

    SinCosYX ,,  in Fig. 4. Thus, Cos and Sin can be calculated by finding the

co-ordinates of the new point [14].

Fig. 4 Vector in Cartesian coordinates

In case of the vector length not equal to unity and it is rotated by an angle

θ and the new coordinates of the point    1,1  iYiX in Fig. 5 of the vector after

rotation is given by the Cartesian geometry formulas:

   SinYCosXiX ii 1

(1)

   CosYSinXiY ii 1

 (2)

Fig. 5 Rotation of a vector

It is clear in the above equations that the Cos term provides scaling,

which means it reduces the magnitude of the vector as 1Cos . So, by removing

the Cos term from the above equations, the magnitude of the vectors is getting

increased by the factor 1Cos as shown in Fig. 6.

Fig. 6 Pseduo Rotations

Int. J.Adv.Sig.Img.Sci, Vol. 5, No.2, 2019

27

 With the increase of i values, the values of iTan and i goes on decreasing.

After each iteration the gets added or subtracted to the angle accumulator. Let z

represents the angle accumulator.

   iii dZiZ 1 (3)

Thus, the equations become

      iiYdiXiX i  21 (4)

      iiXdiYiY i  21 (5)

Here the di term act as the deciding factor to perform the addition and the

subtraction operation in the equations. The value of id is nothing but the sign of

the  1iZ .

The different modes of CORDIC algorithms [15] are used to calculate

different functions. There are two (2) modes: Rotation and Vector

 CORDIC Rotation Mode

In this, the sign of id depends on the sign of the  1iZ and this which

makes „z‟ converge to 0, and it is known as „rotation mode‟.

       iYidiXiX i  21 (6)

       iXidiYiY i  21 (7)

     idiZiZ 1 (8)

In conventional CORDIC these angles are to form all other angles 45, 26.6,

14, 7.1, 3.6, 1.8, .9, 0.4. Taking 30 degree as an example as mentioned in Table 1

and described in Fig. 7.

TABLE 1: Iteration values for rotation mode for 30o

Iterations(i) di θi Zi Yi Xi

0 +1 45 +30 0 0.6073

1 -1 26.6 -15 0.6073 0.6073

2 +1 14 +11.6 0.3036 0.9109

3 -1 7.1 -2.4 0.5313 0.8350

4 +1 3.6 +4.7 0.4270 0.9014

5 +1 1.8 +1.1 0.4833 0.8747

6 -1 0.9 0.7 0.5106 0.8596

7 +1 0.4 +0.2 0.4972 0.8676

30 = 45 -26.6+14 -7.1+3.6+1.8 -0.9+0.4

After n iterations,

    ZSinYZCosXKnX  (9)

    ZSinXZCosYKnY  (10)

Int. J.Adv.Sig.Img.Sci, Vol. 5, No.2, 2019

28

   0nZ (11)

Fig.7 Rotations for 30 degrees

To avoid the storing of constant value of scaling constant in order to save
area, we start with values as X = 1/K [X = 0. 6072529 and Y = 0].For result with „n‟

bits of precision, „n‟ CORDIC iterations are necessary [16]. As Z(n) tends to „0‟, X(n)

and Y(n) tends to ZCos and ZSin . Range of angles covered is -99.7o ≤ z ≤

99.7o.where 99.7o is total sum of all the angles in look-up-table.

 CORDIC Vectoring Mode

 The CORDIC equation becomes:

     2/22 YXKnX  (12)

   0nY (13)

    
X

YTanZnZ 1 (14)

Figure 8 describes the vectoring mode of a point inclined at 30 degree and

the iterative values of the process are mentioned in Table 2.

Fig.8 Vectoring mode for 30 degrees

Int. J.Adv.Sig.Img.Sci, Vol. 5, No.2, 2019

29

TABLE 2. Iteration values in Vectoring mode

Iterations (i) Zi Θi Yi

0 0 45 2

1 45 26.6 1

2 71.6 14 -0.5

3 57.6 7.1 0.375

4 64.7 3.6 -0.078

5 61.1 1.8 0.151

6 62.9 0.9 0.039

7 63.8 0.4 -0.019

8 63.4 0.2 0.009

To calculate YTan 1 , at the beginning we take X = 1 and Z = 0

However, one can take advantage of below formula to limit the range of

fixed-point numbers encountered.

   YTan
Y

Tan 12/11   (15)

III. RESULTS AND DISCUSSION

For verifying the results, a simulation in Xilinx of the CORDIC algorithm
is realized and the output is shown in Fig. 9. In VHDL, all these implementations

are designed with the help of ISE environment and ISIM simulator. The earlier

circuits are synthesized by Xilinx spartan XC5VTX240T device.

Fig. 9 Simulation Output

The generation of input vector is done in such a way that all the four

quadrants gets covered and standardized to have a magnitude equal to 1. For 16-
bit input, A (1,6) is the format of fixed point. As the CORDIC convergence range is

restricted to  2/,2/  , each input vector has to be rotated by an angle of 2/ ,

moving every vector to the forth and first quadrant such that the range can be

increased. Table 3 gives the results of comparison among the three methods-
sequential, parallel, pipelined and parallel methods.

Int. J.Adv.Sig.Img.Sci, Vol. 5, No.2, 2019

30

TABLE 3. Comparison of 3 Architectures

S.NO. METHOD SLICES LUT FLIP FLOP MAX CLOCK FREQUENCY

1. Sequential 957 1809 952 362.588

2. Parallel 964 905 884 448.762

3. Parallel- Pipelined 977 902 873 464.563

It is inferred from Table 3 that the parallel-pipelined method has the
highest maximum-clock frequency which is 464.563 (approx.). The length of the

critical path of the circuit is reduced with the introduction of pipelining. Thus,

this method has the lowest delay when compared to all three.

IV. CONCLUSION

In this paper, a parallel-pipelined architecture for CORDIC algorithm is
discussed. Though there is an increase in area with the addition of registers, delay

is reduced drastically. When compared to existing methods the parallel-pipelined

architecture has the highest max-clock frequency. Since real time data acquisition

is the need of the hour, this method has enormous scope in real time processing.
It can be used in navigation applications, radar signal processors and unmanned

aerial vehicle (UAV‟s) that require high computational speed. CORDIC is definitely
a light at the end of the tunnel because they are used in super computers, which

is an evolving technology.

REFERENCES

[1]. R. Andraka, “A survey of CORDIC algorithms for FPGA based computers”,
ACM/SIGDA sixth international symposium on Field programmable gate

arrays, 1998, pp. 191-200.

[2]. K. Maharatna, S. Banerjee, E. Grass, M. Krstic, and A. Troya, “Modified

virtually scaling-free adaptive CORDIC rotator algorithm and architecture”,

IEEE Transactions on circuits and systems for video technology, Vol. 15,
No. 11, 2005, pp.1463-74.

[3]. E. Antelo, J. Villalba, J.D. Bruguera and E.L. Zapata, “High performance

rotation architectures based on the radix-4 CORDIC algorithm”, IEEE

Transactions on Computers, Vol. 46, No. 8, 1997, pp. 855-70.

[4]. J. Li, J. Fang, B. Li and Y. Zhao, “Study of CORDIC algorithm based on

FPGA”, IEEE Chinese Control and Decision Conference, 2016, pp. 4338-
4343.

[5]. A. Tang, L. Yu, F. Han and Z. Zhang, “CORDIC-based FFT real-time

processing design and FPGA implementation”, IEEE International

Colloquium on Signal Processing & Its Applications, 2016, pp. 233-236.

[6]. S. Aggarwal, P.K. Meher and K. Khare, “Concept, design and
implementation of reconfigurable CORDIC”, IEEE Transactions on Very

Large Scale Integration Systems, Vol. 24, No. 4, 2015, pp. 1588-92.

[7]. X. Zhang, X. Zhao and B. Zhou, “The Design of Direct Digital Synthesizer

Based On Cordic Algorithm and FPGA Implementation”, International

Conference on Computer Engineering, Information Science & Application

Technology, 2016, pp. 98-103.

Int. J.Adv.Sig.Img.Sci, Vol. 5, No.2, 2019

31

[8]. J.M. Mehta and P. Trivedi, “An enhanced mixed-scaling-rotation CORDIC

algorithm with weighted amplifying factor”, IEEE International Conference
on Digital Signal Processing, 2016, pp. 527-531.

[9]. X. Xiao, E. Oruklu and J. Saniie, “Reduced memory architecture for

CORDIC-based FFT”, IEEE International Symposium on Circuits and

Systems, 2010, pp. 2690-2693.

[10]. G. Zhang and F. Chen, “Parallel FFT with CORDIC for ultra wide band”,
IEEE International Symposium on Personal, Indoor and Mobile Radio

Communications, Vol. 2, 2004, pp. 1173-1177.

[11]. H. Huang and L. Xiao, “CORDIC based fast algorithm for power-of-two

point DCT and its efficient VLSI implementation”, Microelectronics Journal,

Vol. 45, No. 11, 2014, pp. 1480-1488.

[12]. Y.T. Lin, P.Y. Tsai and T.D. Chiueh, “Low-power variable-length fast
Fourier transform processor”, IEEE Proceedings-Computers and Digital

Techniques, Vol. 152, No. 4, 2005, pp. 499-506.

[13]. A.P. Renardy, N. Ahmadi, A.A. Fadila, N. Shidqi and T. Adiono, “FPGA

implementation of CORDIC algorithms for sine and cosine generator”,

IEEE International Conference on Electrical Engineering and Informatics,
2015, pp. 1-6.

[14]. W. Cui, H. Chen and Y. Han, “VLSI implementation of universal random

number generator”, Asia-Pacific Conference on Circuits and Systems, Vol.

1, 2002, pp. 465-470.

[15]. J.M. Muller, “The CORDIC Algorithm”, Elementary Functions, 2016, pp.

165-184.
[16]. N. Das, S. Jena and S.K. Panda, “FPGA implementation of Angle Generator

for CORDIC Based High pass FIR Filter Design”, IOSR Journal of

Electronics and Communication Engineering, 2016, pp. 1-11.

