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Abstract: The resource-constrained nature of Wireless Sensor Networks (WSNs) 
makes efficient identification of rogue nodes a significant problem. A scalable, 
lightweight algorithm that can detect and mitigate harmful behavior is the goal 
of this effort to improve network security. The Rabin-Karp method, well-known 
for its pattern-matching efficiency, is modified to verify transmitted data packets 
using hashes. To guarantee the integrity of data flow inside the network, the 
technique uses hash comparisons to identify inconsistencies suggestive of rogue 
nodes. Maintaining high detection accuracy while reducing computing overhead, 
false positives, and energy consumption is the goal of the approach to be 
designed. To optimize network performance, the algorithm runs at the level of 
the cluster heads and filters packets before they reach the base station. The 
objective is to provide a dependable, scalable, and energy-efficient solution for 
WSN security. This will ensure that data remains intact and that rogue nodes 
cannot disrupt the network. This method improves the reliability of WSNs and 
guarantees continuous monitoring, making them ideal for mission-critical 
applications. Incorporating the Rabin-Karp algorithm solves the urgent problem 
of trustworthy malicious node identification in contemporary WSNs by striking 
a compromise between computational efficiency and effective security. 

Keywords: Malicious node detection, wireless sensor networks, Rabin-Karp 
algorithm, data integrity, energy efficiency. 

I. INTRODUCTION 

Modern communication systems use WSNs for environmental monitoring 
and critical infrastructure management. Distributed and resource-constrained 
nodes leave them susceptible to security risks, especially rogue node activity. 
Threats may interrupt network functioning, jeopardize data integrity, and cause 
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major operational issues. Addressing these vulnerabilities requires effective WSN-
specific detection techniques. This system uses the Rabin-Karp algorithm's hash-
based string matching to identify rogue nodes. The goal is to improve threat 
detection and reduce misclassification. The aim is to provide a robust architecture 
with secure WSN communication without computational or energy overheads. 
Malicious node identification benefits from the Rabin-Karp algorithm's 
computational efficiency and scalability. The technique quickly identifies 
abnormalities by transforming data into hash values, enabling security threat 
response. Due to resource limits, WSNs benefit from this lightweight but effective 
technique. The proposed framework solves the shortcomings of previous 
approaches by including improved detection algorithms. High false positives and 
negatives and low flexibility to change network settings are examples. The system 
balances detection accuracy and computing economy with adaptive thresholding 
and multi-layer verification. 

Environmental monitoring, healthcare, and industrial automation depend 
on WSNs for data transmission. Due to their decentralized design and resource 
limits, WSNs pose security risks despite their value. Malicious nodes may interrupt 
communication, damage data, and drain network resources, threatening WSN 
functioning and dependability. Current detection algorithms find Real-time 
malicious node identification difficult because of high false-positive rates, 
computational inefficiency, and restricted scalability. A hash-based string-
matching method called the Rabin-Karp algorithm solves the challenge due to its 
computational efficiency and versatility. This technique converts node data into 
hash values and compares them to usual behavior patterns to discover anomalies 
quickly. The lightweight computational needs make it suited for resource-
constrained WSNs. The method uses adaptive thresholding and multi-layer 
verification to improve accuracy and dependability. Our algorithms decrease false 
positives and negatives and provide scalability and adaptation to changing network 
circumstances. The framework detects rogue nodes efficiently and securely using 
the Rabin-Karp algorithm, ensuring WSN reliability. 

The proposed method might improve WSN security and efficiency. The 
system improves secure communication technology by solving approach 
limitations. Subsequent sections discuss the technique, experimental assessment, 
and outcomes that show this strategy achieves its goals. Section 2 describes how 
the Rabin-Karp algorithm is integrated into WSN architecture and adapted for 
malicious node identification. This section describes how the algorithm's 
computational efficiency and hash-based techniques aid detection. The 
experimental setup and assessment metrics in Section 3 show the system's 
performance in several network circumstances, including node density and traffic 
patterns. This section describes the system reliability and accuracy testing 
framework. Results and discussion in Section 4 assess the system's accuracy, 
dependability, and categorization rates. The results' practical WSN deployment 
implications are also examined. Section 5 concludes with a summary and 
suggestions for improving the detection method. 

II. LITERATURE SURVEY 

One of the main areas of focus in the systematic approach to combating 
emerging cyber threats has been developing efficient models for network IDS. 
Improvement methodologies and technologies for intrusion detection systems 
center on performance measures and real-world obstacles [1]. Cybersecurity 
technologies have improved to the point where they can detect and profile malicious 
DNS over HTTPS (DoH) traffic using statistical pattern recognition approaches. 
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Statistical methods are used to detect and categorize encrypted traffic patterns, 
resolving traditional systems' difficulties while handling encrypted communications. 
Certain approaches like clustering and classification algorithms successfully 
differentiate between legitimate and malicious activities. By using real-world 
datasets for rigorous validation, the significance of finding a balance between recall 
and accuracy in detection is brought to light. The disparity between detection 
efficiency and processing overhead is discussed in [2]. The improved Aho-Corasick 
algorithm changes the game for network intrusion detection systems by making 
pattern-matching more efficient. Modifications were made to classic algorithms to 
minimize memory use and processing time to address the challenges of high-speed 
network systems. Modifications to the state-transition mechanism and 
parallelization are examples of innovations that improve the efficiency of handling 
large data streams.  

Fast and accurate threat detection is essential in high-demand sectors 
where the technology in [3] has practical applications. WSNs provide a dependable 
method for estimating node positions, optimally grouping nodes, and detecting 
coverage holes. The method guarantees precise node location and strong clustering 
using hybrid deep reinforcement learning, drastically decreasing coverage gaps. By 
reducing communication overhead and increasing energy consumption efficiency, 
this technology improves resilience and prolongs the lifetime of networks [4]. To 
tackle the growing complexity of IoT ecosystems, it is natural to expand this 
framework to include heterogeneous data streams [5].  

Securing more deployment situations may be possible with further 
improvements to account for developing threat models [6]. Security measures for 
storing massive data in the cloud may be improved using pattern-matching 
methods that use deep hypersphere models. This fresh method guarantees data 
privacy while reducing false positives by concentrating on anomaly detection within 
encrypted datasets [7]. Significant advances in processing large-scale textual 
datasets have been shown by fast text comparison algorithms that use 
Elasticsearch in conjunction with dynamic programming [8]. Android malware 
detection frameworks use powerful machine learning algorithms to tackle ever-
changing mobile device security threats. To combat issues like obfuscation and 
zero-day threats, these systems center on detecting malware patterns using 
improved feature extraction and classification algorithms [9]. Pattern-matching self-
replication algorithms allow iterative adaptation for varied datasets, revolutionizing 
computing jobs. These methods improve system efficiency without sacrificing 
accuracy by standardizing data processing in areas such as duplication [10].  

With feature selection and Support Vector Machines (SVM), IDS provides 
advanced methods for protecting complex network architectures. These systems 
eliminate or greatly reduce false positives by detecting cyber threats using 
dimensionality reduction and strong classification models [11]. SQL injection 
detection techniques use hybrid frameworks that combine static and dynamic 
analysis to safeguard database systems. These frameworks combine machine 
learning with real-time database monitoring to provide a thorough method for 
protecting data integrity [12]. Greater use in fields like cloud computing and big 
data analytics is possible because of ongoing advancements in GPU utilization and 
algorithmic improvements [13].  

Deep Packet Inspection (DPI) technologies use algorithms powered by 
artificial intelligence and machine learning to enhance the analysis of network 
traffic and identify threats. These technologies accurately detect abnormalities and 
provide thorough insights into encrypted and non-encrypted communications. 
Cybersecurity frameworks of the future will not be possible without DPI 
technologies, which combine scale with flexibility [14]. More complex intrusion 
detection systems are required to protect e-commerce platforms from the ever-
growing list of cyberattacks. To meet this need, frameworks driven by machine 
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learning use adaptive models that can spot outliers even in highly transactional 
settings. While keeping operations efficient, these systems prioritize data protection 
and fraud prevention [15].  

Enterprise storage solutions may be optimized using cloud-based image 
deduplication systems, utilizing modern pattern recognition and hashing 
algorithms to eliminate duplicate data entries. These frameworks are designed to 
help enterprises manage their enormous digital assets more efficiently while still 
ensuring data accuracy. These systems emphasize the significance of flexible 
cybersecurity solutions in ever-changing network settings [17].  

An improved method for detecting intrusions in sensor networks is 
presented in this reference, which uses a distributed signature detection strategy. 
The approach uses a distributed system in which several sensor nodes work 
together to analyze intrusion signatures efficiently. The system aims to enable real-
time threat detection with decreased latency and optimized resource utilization by 
dispersing the computing burden throughout the network [18]. This citation 
analyses how well network intrusion detection systems use pattern-matching 
techniques. It thoroughly examines several algorithms, comparing their speed, 
accuracy, and computing economy. Highlighting the significance of balancing 
accuracy with resource consumption, the study offers insights into algorithm 
selection according to unique security needs [19]. Vulnerabilities, including 
collision, pre-image, and second pre-image assaults, are thoroughly examined in 
the debate, along with techniques to mitigate their effects [20]. 

III. PROPOSED SYSTEM 

The Rabin-Karp method is used in WSN to identify malicious nodes, as 
shown in Figure 1. The three main parts are a base station, cluster heads, and 
sensor nodes. Sensor nodes collect and send data to their respective cluster leaders. 
Using the Rabin-Karp method, the cluster heads function as intermediary 
processing units to calculate hash values for transmitted data packets and identify 
abnormalities.  

 

Fig. 1 Network Architecture for Malicious Node Detection  

Before being sent to the base station for processing, only data packets that 
have been verified are sent. The flagged data is analyzed for advanced insights, and 
the base station updates the malicious node database. Enhanced network security, 
low false positives, and optimal energy utilization are all guaranteed by this design. 
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The Rabin-Karp method is the way to go for settings with limited resources since it 
enhances detection speed and scalability using a lightweight hashing approach. For 
WSN security, the figure graphically highlights the interplay between nodes and the 
data verification pipeline. 

Data packets are generated and sent to the cluster head by sensor nodes. 
Every packet that arrives at the cluster node is hashed using the Rabin-Karp 
algorithm. The calculated hash is compared to the predicted hash value to detect 
outliers. The base station receives only validated packets; any packets that do not 
match are marked as possibly malicious. The data marked as suspicious is either 
removed or processed further at the main station. By doing so, any possible 
disturbances may be averted, and harmful conduct may be caught early on. System 
optimization of energy usage and reduction of computational overhead at the base 
station is achieved by introducing hash-based verification at the cluster head. 
Figure 2 depicts a mechanism that efficiently and securely maintains data integrity. 
 

 

Fig. 2 Data Transmission and Hash Matching Process  

A. Data Collection and Preprocessing 

Data collection is all about gathering packets from network sensor nodes. 
Preprocessing is done on the acquired data to make it ready for analysis by removing 
duplicates. For hash calculation, each packet is separated and given a unique 
identifier. Accurate detection is made possible by preprocessing, which guarantees 
constant data quality. Detection procedures in subsequent phases are supported 
by minimizing delays and achieving effective routing. To identify malicious nodes 
accurately and scalability, the network must be pre-processed.  

 

B. Hash Computation Using Rabin-Karp 

Each data packet is assigned a distinct hash value during hash calculation. 
For WSNs with limited resources, the Rabin-Karp algorithm guarantees efficient 
and lightweight calculations. At this point, the system uses the contents of each 
packet to generate a hash value. The produced hashes are then checked against 
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trustworthy values kept at the base station or cluster head. In this way, the validity 
of every packet is checked before it travels further in the network. The complex 
functions of the cluster head are shown in Figure 3, which emphasizes its 
sophisticated function in detecting and blocking harmful packets. The cluster head 
receives data packets from the sensor nodes and processes them using separate 
modules. The Hash Generator uses the Rabin-Karp algorithm to calculate the hash 
values of incoming packets, which the Packet Collector Module receives. The Hash 
Comparator finds the best match by comparing these values to a reliable reference 
hash. While legitimate packets are delivered to the base station, those that fail 
validation are marked and transferred to Malicious Packet Storage. This modular 
design guarantees energy efficiency by distributing computing to the cluster head 
and relieving the base station of some of its duties. Also, flagged packets are saved 
locally for future research or network changes. To reduce the possibility of network 
assaults while keeping throughput efficiency high, the cluster head plays a multi-
faceted mediating function in real-time data filtering, as shown in Figure 3. 
 

 

Fig. 3 Cluster Head Role in Advanced Packet Filtering and Security 

C. Detection and Flagging 

When identifying and reporting suspicious activity, discrepancies between 
calculated and trusted hashes are marked as such. Network regulations determine 
whether the flagged packets are deleted or retained in a temporary database for 
further examination. After verification, valid packets are sent to the base station for 
further processing. Minimizing the effect on overall network performance while 
preserving energy efficiency is the goal of this stage, which also involves real-time 
monitoring and mitigation. 

D. Analysis, Reporting, and Updates 

The last step is to verify malicious behavior by analyzing flagged data at the 
base station. The database of malicious nodes is updated with the findings to 
improve future detection. Results and trends in detection are summarized in reports 
created for administrators. In this step, we work on making the system more 
adaptable by learning from previous detections, which will help us fine-tune the 
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algorithm and ensure it can withstand new threats. Potential future developments 
include anomaly detection using machine learning and dynamic hash modifications 
for improved security. 

Identifying malevolent nodes in WSNs is not an easy task. Sensor nodes have 
limited computing power and energy, making applying sophisticated detection 
algorithms difficult. This is one of the main issues. Because of this limitation, we 
must use lightweight methods, such as the Rabin-Karp algorithm, which is 
unsuitable for dealing with dense networks. Static detection technologies become 
less effective as attackers constantly change their approach. An example of how 
skilled attackers might increase the risk of false negatives is by manipulating data 
to impersonate authentic packets. Constant hash calculations could drain sensor 
nodes' battery resources; finding a happy medium between the two is another 
obstacle. Increased network complexity may decrease detection efficiency, which 
becomes a challenge in large-scale installations regarding scalability. To tackle 
these difficulties, improving detection skills while maintaining resource efficiency is 
the goal of using adaptive techniques like machine learning models or dynamic hash 
functions. The procedure for identifying malevolent nodes in WSNs with the Rabin-
Karp algorithm is shown in Figure 4.  

 

Fig. 4 Workflow of Malicious Node Detection Using Rabin Karp Algorithm 

The process moves on to sensor nodes, starting with data packet generation and 
transmission to the cluster head. Using the Rabin-Karp algorithm, the cluster head 
determines the hash value of each packet and compares it to the predicted hash 
value. The base station receives verified packets and processes them further; 
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packets that do not match are marked as such. Finally, the base station refreshes 
the database of malicious nodes, does any required analyses, and provides warnings. 

III. RESULTS AND DISCUSSIONS 

An earlier approach to real-time intrusion detection in sensor networks was 
proposed by Kim et al. as a distributed signature detection framework. This 
framework used the notion of dispersing computing burdens among sensor nodes. 
Their technique improved scalability and efficiently dealt with various dangers. 
Regarding network intrusion detection systems, a prior [18] evaluated the speed, 
accuracy, and resource efficiency of pattern-matching algorithms. Scalability and 
real-time performance in high-speed networks were the primary focus of their 
investigation. Previous methods that used approaches for data integrity assurance, 
secure communication, and authentication were examined by Sharma et al. as 
cryptographic hash functions. Their research improved cryptography and 
mitigation techniques for vulnerabilities like collision and pre-image attacks.  

Using the deterministic method of the Rabin-Karp algorithm, the proposed 
system is built to reliably identify malicious actions. This guarantees that the 
outputs are constant when the inputs are the same, which reduces performance 
variability. Adding a multi-layer verification architecture that evaluates the behavior 
of nodes further increases reliability. The system guarantees continuous monitoring 
even when the network is under heavy stress since it uses a distributed design to 
reduce the likelihood of failure at any location. The experimental findings highlight 
the system's robustness in many settings since changes in node density or traffic 
patterns do not impact detection reliability. Figure 5 shows the results of comparing 
the accuracy of malicious node identification.  
 

 

Fig. 5 Malicious Node Detection Accuracy 

The detection accuracy increased to 93.5% with the current method, 
compared to 85.2% with the prior method. With the addition of the Rabin-Karp 
algorithm, performance skyrocketed, and accuracy reached 98.3%. An even better 
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accuracy of 99.6 percent was attained after further optimization of the Rabin-Karp 
system, proving that the algorithm successfully identified harmful nodes with low 
rates of incorrect detection and misdetection. The time required for detection has 
been reduced by the enhanced method, demonstrating its efficiency. Table 1 shows 
the results of a WSN utilizing the Rabin-Karp algorithm to identify rogue nodes.  
 

TABLE. 1 Malicious Node Detection Results 
 

Packet ID Computed Hash Expected Hash Detection Result Status 
P001 45ACB 45ACB Match Verified 
P002 67DFE 12ABC Mismatch Malicious 
P003 34BCD 34BCD Match Verified 
P004 78EFG 45XYZ Mismatch Malicious 
P005 12ABC 12ABC Match Verified 

 
Every packet is hashed using the Rabin-Karp algorithm, and the hashes are 

compared to trusted predetermined values. A match indicates legitimate packets, 
whereas malicious ones are shown as mismatched. The entire evaluation of each 
packet is reflected in the detection status. This tabular depiction shows the 
effectiveness and precision of the Rabin-Karp method in detecting harmful nodes. 
With its practical use for WSNs in real-time monitoring and data security, it 
guarantees safe data transfer while minimizing false positives. A breach in network 
security may occur when a hostile node goes undetected, a phenomenon known as 
misdetection. The system based on Rabin-Karp uses adaptive thresholding methods 
to tackle this. These techniques allow the detection criteria to be adjusted 
dynamically according to the circumstances of the network in real time. It is less 
likely that harmful actions would go unnoticed. The system uses anomaly detection 
methods with the Rabin-Karp approach as an extra analytical layer. Machine 
learning models improve the system's ability to distinguish between harmless and 
dangerous outliers by further integrating detection thresholds. A more secure 
network environment is achieved since test scenarios show that mis-detection rates 
are greatly lowered.  Figure 6 compares the detection rates and dependability of 
techniques utilized for malicious node detection in WSNs.  
 

 

Fig. 6 Reliability and Detection Rates 

Before implementing the Rabin-Karp method, the system's dependability 
was 82.3%; after its implementation, it soared to 96.5%. The misdetection rates in 
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the old and new systems are much lower, going from 5.6% in the old system to 1.1% 
in the new system. With a drop from 4.1% to 0.7%, the rate of incorrect detection 
was also reduced. With a dependability of 98.5% and a detection error rate of 0.1%, 
the optimized Rabin-Karp system proved to be the most effective and precise option. 
Information on the Rabin-Karp algorithm's parameters and performance metrics in 
a WSN setting is shown in Table 2.  
 

Table 2 Rabin-Karp Algorithm Parameters and Performance Metrics 
 

Parameter Value Unit Impact 
Efficiency 

Level 
Hash Computation 2.5 ms Faster Data Processing High 

Memory Usage 150 KB 
Minimal Resource 

Overhead 
High 

Detection Accuracy 98.7 % Reliable Node Validation High 

False-Positive Rate 1.3 % 
Reduced 

Misclassification 
Low 

Energy 
Consumption 

0.75 J 
Improved Network 

Lifespan 
High 

 
This tabular study shows the algorithm's suitability for resource-

constrained WSNs, highlighting its lightweight nature. The effectiveness of this 
system is shown by its excellent detection accuracy and low false-positive rate. To 
top it all off, the technique is perfect for detecting rogue nodes in real time since it 
uses very little memory and energy. When protecting WSNs, the table gives a good 
overall picture of how well the algorithm worked. The Rabin-Karp method 
incorporates probabilistic hashing techniques to reduce the occurrence of wrong 
detection, which occurs when benign nodes are mistakenly identified as malicious. 
One typical cause of false positives is that these methods lessen the likelihood of 
hash collisions. The system uses an iterative verification procedure to investigate 
identified nodes before labeling them hostile. The effect of first-pass detection 
mistakes is mitigated. In addition, the system may improve its detection accuracy 
over time by learning from previous misclassifications via feedback mechanisms. A 
significant decrease in false positives has been seen in performance assessments, 
which adds to the network's overall dependability.  Figure 7 shows a side-by-side 
comparison of the systems' misdetection and false detection rates.  
 

 

Fig.7 Misdetection and Wrong Detection Comparison 
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The prior method was far worse, with a rate of 5.6% for misdetection and 

4.1% for incorrect detection. The current system's Rabin-Karp algorithm 
contributed to a 3.2% and 1.9% reduction, respectively. The enhanced and fine-
tuned systems showed remarkable progress, with false positive rates falling to 0.2% 
and misdetection rates to 0.4%. These results demonstrate that the Rabin-Karp 
algorithm is a great fit for WSN malicious node identification since it successfully 
reduces false positives and negatives. The Rabin-Karp algorithm is compared to 
earlier approaches in Table 3, which show how they were utilized to identify rogue 
nodes in WSNs. 

 
TABLE. 3 Comparison of Previous Methods and Rabin-Karp Algorithm 

 

Metric 
Signature-

Based 
 Anomaly-

Based 
Rabin-Karp 
Algorithm 

Computational Time High Moderate Low 
Detection Accuracy 85% 90% 98.70% 
False-Positive Rate 5% 3% 1.30% 

Energy consumption High Moderate Low 
Scalability Moderate Low High 
 
The comparison shows the algorithm's benefits, including scalability, 

precision, low false-positive rates, and lightweight architecture. The Rabin-Karp 
algorithm is more suited to real-time WSN settings than earlier techniques because 
it strikes a compromise between computing efficiency and security. The table makes 
it easy to see how the proposed technique is better than existing signature—and 
anomaly-based approaches. 

 

IV. CONCLUSIONS 

Identifying malicious nodes in WSNs poses problems with limited resources, 
processing data in real-time, and guaranteeing the stability of the network. The 
Rabin-Karp algorithm provides a lightweight and efficient method for hash-based 
verification, which helps to overcome some of these issues. On the other hand, there 
are certain restrictions, such as the need for precise hash values and the possibility 
of being susceptible to complex attacks that imitate legitimate packet behavior. The 
reduced processing overhead at the cluster head can be a problem even in resource-
constrained settings. In vital applications, including healthcare monitoring, 
environmental sensing, and industrial automation, the Rabin-Karp algorithm may 
improve data quality, decrease false positives, and optimize energy utilization, 
making it a practical choice for protecting WSNs. Its small footprint guarantees 
performance-preserving scalability for larger-scale network installations. 
Integrating machine learning models to detect abnormal patterns and enhance 
detection accuracy is one example of advanced technology that might be explored 
to augment the Rabin-Karp algorithm. Further strengthening its application is 
using dynamic hash functions to fight developing attack techniques and adapting 
the approach to heterogeneous networks. One way to make it better at handling 
new security threats is to ensure it works with new WSN technology. 
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