
Int. J.Adv.Sig.Img.Sci, Vol. 10, No. 2, 2024

12

SECURING WEB APPLICATIONS WITH OWASP ZAP FOR
COMPREHENSIVE SECURITY TESTING

S. P. Maniraj
Department of Data Science and Business Systems, School of Computing,

SRM Institute of Science and Technology,
Kattankulathur, Chennai, Tamil Nadu, India.

manirajp@srmist.edu.in

Chitra Sabapathy Ranganathan
Mphasis Corporation,

Chandler, Arizona, USA.
chitrasabapathyranganathan@gmail.com

Satheeshkumar Sekar

Mphasis Corporation,
Chandler, Arizona, USA.

satheeshkumar.sekar24@gmail.com

Submitted: Jun,03, 2024 Revised: Aug,08, 2024 Accepted: Aug,31, 2024

Abstract: The powerful Open Web Application Security Project (OWASP)-Zed
Attack Proxy (ZAP) tool secures web applications with extensive security
testing. Its main goal is to find and fix web application vulnerabilities before
they can be exploited. The goal is to improve web application security using
OWASP ZAP scans and inspections. Simulating SQL injection and cross-site
scripting attacks using the tool reveals an application's security flaws. OWASP
ZAP automates testing to protect sensitive data and web application integrity.
The purpose is to protect online applications from attacks to reduce security
breaches and ensure industry compliance. Modern online applications'
security and dependability depend on OWASP ZAP's systematic vulnerability
discovery and mitigation. By enhancing scan performance and providing
actionable security information, the experimental results show that the
OWASP ZAP helps safeguard online applications and reduce the danger of
cyberattacks. The objective is to enhance its skills to provide comprehensive,
prompt, dependable security evaluations across various situations.

Keywords: Zed attack proxy, web application security, vulnerability detection,
security testing, threat mitigation.

I. INTRODUCTION

Many online services and platforms depend on web apps, essential to the
digital infrastructure. The growth of web-based applications has increased
security risks. Open-source web application security testing tool OWASP Zed
Attack Proxy discovers and resolves vulnerabilities. OWASP ZAP simulates
numerous attack pathways to help security experts find XSS, SQL injections, and
dangerous setups. Flexibility and usability make it vital for web application
security testing. This research shows how OWASP ZAP extensively tests web
applications for security. Because web apps are online so frequently, many
assaults may target them. Active and passive scanning by OWASP ZAP finds web
application vulnerabilities. Intercepting, assessing, and reporting user-

Int. J.Adv.Sig.Img.Sci, Vol. 10, No. 2, 2024

13

application communication discloses security concerns. Allowing administrators
to apply critical updates minimizes attack risk.

OWASP ZAP will be tested for web application vulnerability identification
and fixation. Scanning, fuzzing, spidering, and attack simulation are OWASP ZAP
features. ZAP finds vulnerabilities traditional testing misses due to these traits.
The application supports many securities testing frameworks, making it useful in
numerous development contexts. Scan for current and upcoming security
vulnerabilities to safeguard internet applications. To showcase how OWASP ZAP
improves security testing, various web app vulnerability detection and resolution
solutions are displayed. Traditional security testing ignores major weaknesses
when modeling attacks. OWASP ZAP automates and scales the whole software
development lifecycle. As a security expert or beginner, its user-friendly UI,
substantial documentation, and community assistance may help protect online
apps.

The relevance of security testing in preventing web application attacks is
stressed. Online application security gets harder as it becomes more complicated.
OWASP ZAP can detect numerous web application security issues with its robust
and adaptable solution. Automated testing and regular scans by ZAP enable
businesses to safeguard their web applications from known and future dangers.
To protect consumers and businesses online, OWASP ZAP stops cyberattacks.
The reason and how OWASP ZAP is used for Web Application Comprehensive
Security Testing is explained in Section 2. OWASP ZAP's Comprehensive Web
Application Security Testing is covered in Sector 3. Section 4 illustrates how
Comprehensive Security Testing of Web Applications uses OWASP ZAP across
datasets. Finally, Section 5 concludes with a conclusion.

II. RELATED WORKS

An analysis of OWASP ZAP to detect security gaps on websites is discussed
in [1]. A detailed presentation on using the OWASP ZAP tool to find website
security holes is also included. Automated scanning for vulnerabilities was one of
the approaches examined in the evaluation. It demonstrated how OWASP ZAP
might improve website security by doing thorough and systematic vulnerability
assessments, and it highlighted the tool's usefulness in finding security issues
across various online applications. Methods, tools, and techniques for security
testing that investigate and fix vulnerabilities are discussed in [2]. A wide range of
security testing approaches, tools, and procedures were researched in depth to
find and fix security flaws. A variety of security testing methodologies, both old
and new, were included in the study. The main objective was to assess how well
these methods improved overall cybersecurity and how well they uncovered
possible security flaws.

Exploring security vulnerabilities in SIAKAD websites for higher education
is described in [3]. The vulnerability assessment methodology allowed for
discovering security holes in SIAKAD websites used by institutions of higher
learning. The assessment found these educational platforms to have certain
security flaws and suggested ways to fix them. The results highlighted the need to
conduct frequent security evaluations to guarantee the safety of sensitive
information on academic websites. Automated penetration testing can improve
cybersecurity for small businesses at a low cost, as described in [4]. An automated
penetration testing tool-based approach to improving small businesses'
cybersecurity at a reasonable cost was detailed. This method showed how tiny
firms may use automated methods to find and fix security flaws without a large

Int. J.Adv.Sig.Img.Sci, Vol. 10, No. 2, 2024

14

financial outlay. These solutions provide a simple and effective way to boost
cybersecurity for settings with limited resources.

A case study on OWASP's top 10 methods for website security analysis was
conducted in [5]. A comprehensive evaluation of website security was provided via
the OWASP top 10 methodology, emphasizing a particular website serving as a
case study. The assessment offered key vulnerabilities and ideas on using the
OWASP top 10 methodology to analyze and enhance website security. This
approach was shown in the case study to detect and reduce typical threats to
website security. Assessment of OWASP-based common security vulnerabilities in
online resources of state universities and colleges is described in [6]. The OWASP
framework showed how state university and college websites are prone to typical
security flaws. The examination aimed to find common security concerns and how
they affect institutional websites. The results showed how to fix security issues in
educational online platforms by following the OWASP standards.

Google's penetration testing and open web application security projects are
utilized to evaluate website security [7]. An in-depth analysis of the website's
security was conducted utilizing a combination of Google's penetration testing and
the OWASP top 10 methodology. This method used two well-known security
evaluation tools to find security flaws and evaluate the website's defenses. The
testing was used in a dual-layered examination to make the security analysis
more robust. The OWASP framework is utilized in [8] to prevent SQL injection
attacks [8]. The OWASP framework was used to demonstrate a technique that may
reduce the impact of SQL injection attacks on web servers. The methodology
details methods for protecting against SQL injection vulnerabilities according to
the OWASP standards. One of the most prevalent and harmful forms of assaults
on web applications may be better protected with the help of these tactics.

A rundown of the automated technologies that can check the security of a
cloud is discussed in [9]. Tools for assessing and protecting cloud infrastructures
were the main topic of discussion. The evaluation showed that these technologies
were good at finding security flaws and ensuring that cloud-based apps and
services were safe. The evaluation of top application security tools, from static
analysis to runtime protection, is studied in [10]. A comprehensive review of the
best application security technologies covered everything from static analysis to
runtime protection. The review aimed to shed light on the strengths and
weaknesses of different security solutions in protecting apps across their entire
lifespan. The results verified the usefulness of these instruments in all-
encompassing application security management.

Secure software development and testing using a model-based approach is
described in [11]. This technique provides a systematic way to integrate security
into the software development lifecycle. The suggested approach guarantees a
strong defense against any vulnerabilities by integrating security measures from
the beginning of development through testing. The prevention of firewall and web
application security breaches using Vulnerability Assessment and Penetration
Testing (VAPT) is described in [12]. VAPT was a method for reducing security risks
in firewalls and online applications. Methodical evaluations and testing are at the
heart of the strategy, which aims to find and fix security holes. A complete
framework for improving the security of network infrastructures and web
applications is provided by VAPT implementation.

Predicting assaults on servers hosted on the web was investigated in [13]
using expert systems. This method uses sophisticated technology to assess and
foresee any security risks. Enhancing proactive security measures is the goal of
using expert systems, which may provide early alerts and predictive insights into
potential attack routes. An Architecture for cloud-based security risk analysis and
penetration testing is discussed in [14]. The cloud computing framework was
detailed. The framework offers a methodical way to evaluate and fix security flaws

Int. J.Adv.Sig.Img.Sci, Vol. 10, No. 2, 2024

15

in systems that run in the cloud. From the point of view of penetration testers, the
suggested model is made to strengthen the security of cloud environments.

An empirical examination emphasizing continuous security testing is
discussed in [15]. The research examined how software development security
might be enhanced by including security testing in the DevOps process. The
results show how important it is to do security assessments regularly throughout
the development lifecycle so that vulnerabilities may be found and fixed. Analyzing
website HTTP response headers for vulnerabilities using standard procedures for
penetration testing is described in [16]. The study looked for security holes in
these headers to determine how to secure HTTP response headers against possible
attacks effectively.

The common exposures and vulnerabilities at private universities are
examined in [17]. It focused on web application security and thoroughly evaluated
typical vulnerabilities and exposures at private universities. Examining the
prevalence of security concerns and their effects on private educational
institutions was the study's primary goal, which sought to demonstrate the critical
need for robust security measures to safeguard confidential data. The impact of
web application security flaws and their fixation via experimentation is analyzed
in [18]. Web application vulnerability detection and mitigation was the subject of
an experimental investigation. Web application security flaws may be discovered
and fixed using the methods and tools discussed in this research. The results
emphasize practical techniques to improve the security of web-based systems
using experimental methodology.

The OWASP-recommended web security assessments are studied in [19]. It
demonstrated an examination of online security by OWASP standards. To analyze
and enhance online security, the evaluation focused on implementing OWASP
guidelines. This research proved that web apps are better protected against typical
vulnerabilities and threats when developers follow the OWAS principles. The
effectiveness of DevOps security tools for finding and sealing security
vulnerabilities is discussed in [20]. Several security technologies integrated into
the DevOps architecture were the primary subjects of the evaluation. The results
show how these technologies help with security problem detection and resolution,
which improves DevOps environment security in general.

III. PROPOSED SYSTEM

Open-source security testing tool OWASP ZAP finds online application
vulnerabilities. It is extensively used for manual and automated security testing
and is maintained by OWASP. OWASP ZAP helps find XSS, SQL injections, and
broken authentication issues. As an intercepting proxy, OWASP ZAP monitors and
modifies browser-web application communication. This allows testers to analyze
real-time requests and answers, revealing security vulnerabilities. Active scanning
by ZAP simulates application assaults to find vulnerabilities. A comprehensive
web application security testing approach requires the tool's simplicity and
interoperability with multiple development environments. Passive scanning,
automated fuzzing, and vulnerability reporting let novices and experts find and fix
security vulnerabilities. ZAP will set up a proxy server and redirect all web traffic.
Auto scanners are a part of it and may help find security flaws on websites. Figure
1 shows a ZAP Proxy Server.

Int. J.Adv.Sig.Img.Sci, Vol. 10, No. 2, 2024

16

Fig. 1 ZAP Proxy Server

OWASP ZAP's passive and active web application scans help find security
issues. Passive scanning detects information leaks, cookie misconfigurations, and
SSL/TLS vulnerabilities without altering requests. However, active scanning sends
forged requests to the program to attack SQL injections and XSS vulnerabilities.
ZAP's spidering is vital for application structure mapping. ZAP crawls the
application to find all available pages and links for thorough testing. After
collecting website and input data, the spider uses active scanning to find
vulnerabilities in form fields, URLs, and other input points. ZAP enables web
application fuzzing, which includes delivering random or erroneous data to input
fields to find buffer overflows or faulty input validation. Fuzzing adds value to
security testing by detecting vulnerabilities that standard scanning may miss. A
built-in automatic vulnerability scanner in OWASP ZAP creates reports on found
vulnerabilities, detailing each vulnerability and its severity. These reports help
developers and security teams prioritize and fix security problems. Figure 2 shows
ZAP on a virtual machine running Windows Server 2012. This computer is only
accessible to a select few; thus, the final report remains secure. A basic PHP web
service is made that TFS can call using the ZAP API. The Webservice returns an
OK or a summary of the results.

Fig. 2 Zap Application on Windows Server 2012 VM

OWASP ZAP's ability to do thorough security testing without setup or
knowledge is a major asset. Its user-friendly interface and interaction with
development environments make it accessible to security experts and developers.
ZAP may be integrated into DevOps processes to enable consistent security testing,
lowering the risk of production vulnerabilities. This study hopes to improve
understanding by reviewing the literature, learning how the system works,
collecting data, scanning for vulnerabilities, evaluating, testing, and documenting
the results. The result may be seen in Figure 3.

Int. J.Adv.Sig.Img.Sci, Vol. 10, No. 2, 2024

17

Fig. 3 Research stages using the OWASP framework

The trend towards DevSecOps, which incorporates security into the CI/CD
pipeline, relies on OWASP ZAP. ZAP can automate security tests and interface
with CI/CD platforms like Jenkins, GitLab, and CircleCI to test at every step of
software development. This detects security issues early, lowering remedial costs
and complexity. Developers may detect vulnerabilities before production by
automating security scans using OWASP ZAP in the CI/CD pipeline. This
proactive strategy addresses security problems during development, decreasing
the risk of delivering unsafe apps. As new features and upgrades are released,
automated security testing provides regular security evaluations to keep
applications safe. ZAP's interaction with CI/CD systems may be customized using
scripts and API connectors for security testing. ZAP can automatically scan fresh
builds and deployments and provide reports for development and security teams.
This engagement across teams promotes shared security responsibility and
reduces testing bottlenecks.

OWASP ZAP dramatically minimizes web application vulnerability concerns.
ZAP prevents XSS, SQL injection, and sensitive data disclosure by discovering
security problems early and offering remedial instructions. Unpatched
vulnerabilities may cause data breaches, unauthorized access, and huge financial
losses. OWASP ZAP's ability to identify invalid session management, access
restrictions, and insecure Direct Object References (IDOR) improves online
application security. These vulnerabilities are typically used to elevate privileges,
circumvent authentication, or access restricted resources. OWASP ZAP informs
security teams of application dangers by scanning and delivering real-time
feedback. The ongoing vulnerability assessment technique helps organizations
maintain a solid security posture when introducing web application features and
functionalities.

OWASP ZAP will grow to address new security issues when web
applications adopt new technology. PWA and Web Assembly support might be
expanded. ZAP can secure future web technologies by improving the scanning and
testing of contemporary apps. Another potential development is integrating AI and
ML to boost ZAP's vulnerability detection. AI might improve ZAP's ability to detect
complicated attack patterns, reduce false positives, and find new vulnerabilities.
AI-driven scanning might let ZAP adapt to different application architectures and
setups. Modern online applications increasingly use APIs to link systems and
services, making API security a key potential for OWASP ZAP. Increased API
scanning by OWASP ZAP will provide more extensive security evaluations of
RESTful, SOAP, and GraphQL APIs. The pseudo-code for the proposed algorithm
is as follows:

Int. J.Adv.Sig.Img.Sci, Vol. 10, No. 2, 2024

18

1. Initialize OWASP ZAP Client:
o zap_client: Initialize the ZAP client using the provided API key and

base URL.
2. Define the target URL:

o target_url: The URL of the web application to be scanned.
3. Start a new session:

o start_new_session(zap_client, session_name="ExampleSession"):
Start a new ZAP session for the scanning process.

4. Open the target URL in ZAP:
o open_url(zap_client, target_url): Open the target URL in ZAP to

begin interaction.
5. Spider the target URL to discover all pages:

o start_spider(zap_client, target_url): Start a spider scan to crawl the
target URL and discover all linked pages.

o get_spider_status(zap_client, spider_id): Check the status of the
spider until it is completed.

Initialize OWASP ZAP Client
zap_client = initialize_zap_client(api_key, base_url)
Define the target URL
target_url = "http://example.com"
Start a new session
start_new_session(zap_client, session_name="ExampleSession")
Open the target URL in ZAP
open_url(zap_client, target_url)
Spider the target URL to discover all pages
spider_id = start_spider(zap_client, target_url)
Monitor the spidering status until the completion
while True:
spider_status = get_spider_status(zap_client, spider_id)
 if spider_status == "completed":
break
 else:
sleep(10) # Check spider status every 10 seconds
Start an active scan on the target URL
scan_id = start_active_scan(zap_client, target_url)
Monitor the scan status until the completion
while True:
scan_status = get_scan_status(zap_client, scan_id)
 if scan_status == "completed":
break
 else:
sleep(10) # Check scan status every 10 seconds
Retrieve the scan results
scan_results = get_scan_results(zap_client, scan_id)
Analyze scan results
def analyze_scan_results(scan_results):
 vulnerabilities = []
 for alert in scan_results['alerts']:

Int. J.Adv.Sig.Img.Sci, Vol. 10, No. 2, 2024

19

vulnerabilities.append({
 "alert": alert['alert'],
 "url": alert['url'],
 "risk": alert['risk'],
 "description": alert['description'],
 "solution": alert['solution']
 })
 return vulnerabilities
vulnerabilities = analyze_scan_results(scan_results)
Log vulnerabilities
log_vulnerabilities(vulnerabilities)
Notify the security team about high-risk vulnerabilities
for vulnerability in vulnerabilities:
 if vulnerability['risk'] == 'High':
notify_security_team(vulnerability)
Generate summary report
summary_report = generate_summary_report(vulnerabilities)
Output the summary report

output_report(summary_report)

III. RESULTS AND DISCUSSIONS

OWASP ZAP can discover numerous vulnerabilities; however, it has limits.
Like other automated techniques, ZAP may struggle to find business logic errors.
These issues result from how an application manages workflows and procedures,
which automated scanners cannot understand. Some vulnerabilities may not be
found until later in the development cycle if testing is done on incomplete or
obsolete web applications. Figure 4 shows the number of OWASP ZAP
vulnerabilities in web application components.

0

20

40

60

1 2 3 4

Auth

Session

Config

No. of Modules

Modules
Values in

Auth

Input

Session

Data

Config

Fig. 4 Vulnerability Count Across Web Application Modules.

Each column shows the number of vulnerabilities in a module, such as
Auth, Input Validation, Session Management, Data Handling, and Configuration.
For instance, the Input module has 50 vulnerabilities, suggesting a need for
security assessment and repair. This data helps developers understand which

Int. J.Adv.Sig.Img.Sci, Vol. 10, No. 2, 2024

20

modules need the greatest effort to improve web application security. Table 1
shows OWASP ZAP data for complete web application security testing.
Vulnerabilities Detected shows ZAP's scanning capability by counting web
application security issues.

TABLE. 1 Web application security metrics with OWASP ZAP

Metric Value 1 Value 2 Value 3 Value 4 Value 5

Vulnerabilities Detected 120 140 110 150 130
High-Risk Issues 25 30 20 35 28
False Positives 10 8 12 9 7

Test Coverage (%) 90% 92% 88% 94% 91%
Average Scan Time (minutes) 30 25 35 28 32

High-risk issues identify the most serious vulnerabilities, demonstrating

the tool's ability to detect urgent threats. False Positives—incorrect warnings that
demand additional investigation—are an essential scan accuracy statistic. Test
Coverage indicates how much of the web application was tested for security
vulnerabilities. The tool's average scan time shows its effectiveness in discovering
vulnerabilities quickly. These metrics show OWASP ZAP's thorough web
application security evaluation, helping organizations decrease risks.

ZAP may be integrated with threat intelligence solutions to provide real-
time information regarding exploited threats and vulnerabilities. Threat
intelligence integration lets OWASP ZAP scan for zero-day vulnerabilities and new
threats using current attack vector knowledge. ZAP provides insight into how
attackers could exploit vulnerabilities by tying them to known attack tactics,
exploit kits, or malware families. This information lets security professionals
assess each vulnerability's effect and modify defenses. Figure 5 displays 12
months of vulnerabilities by severity (Critical, High, Medium, Low).

0

10

20

30

40

50

60

0 1 2 3 4 5

Months

V
al

ue
 o

f
M

on
th

s
in

 N
um

be
rs

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Fig. 5 Vulnerability severity levels in Web application testing

Each cell shows the number of vulnerabilities in each severity category for
a month. August saw a surge in Critical vulnerabilities (40), indicating a security
risk. Tracking severity levels over time helps identify patterns and prioritize
patches by vulnerability severity and frequency. This guarantees that major
problems are handled quickly to secure online applications.Table 2 describes how

Int. J.Adv.Sig.Img.Sci, Vol. 10, No. 2, 2024

21

to secure online applications using OWASP ZAP, a comprehensive security testing
tool.

TABLE. 2 Aspects of OWASP ZAP for Web Application Security Testing

Aspect Role Pros Cons

Vulnerability
Scanning

Identifying Web App
Security Flaws

Extensive
vulnerability

detection

Can produce false
positives

Automated Testing
Conducting Security
Tests Automatically

Efficient and easy
to use

May miss complex or
business-logic
vulnerabilities

Manual Testing
Customizing

Security Analysis
Flexibility in

targeted testing

Requires expert
knowledge for
effectiveness

Reporting
Generating Security

Reports

Helps in
compliance and
audit reviews

Reports may require
manual

interpretation

Integration
Supporting

Development
Workflows

Seamless
integration with

DevOps tools

It may slow down
development

pipelines if not
optimized

Vulnerability Scanning is key to finding web application security problems

but may produce false positives. Automated testing saves time and reduces
human effort, yet it may overlook complicated vulnerabilities. CI/CD pipeline
integration allows continuous security checks throughout development, boosting
proactive security management, although it might delay development if not
optimized. Each part shows how OWASP ZAP secures web applications during
development and testing.

IV. CONCLUSIONS

OWASP ZAP's web application security advantages and difficulties are
enormous. Its thorough security testing finds flaws that would otherwise go
undetected, strengthening web application defenses. The program relies on
human skills to evaluate results, and false positives might lead to needless repair.
It can identify simple assaults, but complicated ones need more advanced
detection techniques. OWASP ZAP must be updated and improved as web
application threats change. Automation, machine learning for better threat
detection, and vulnerability mitigation may be future improvements. These areas
must be developed to keep OWASP ZAP relevant and successful in web application
security's ever-changing industry. Future developments include integrating
machine learning for improved vulnerability identification, extending support for
mobile and IoT application security, and the provision of advanced real-time
reporting dashboards. Highlighting usability for non-experts may enhance its
uptake across several sectors. OWASP ZAP is crucial for thorough security testing
because of its accessibility, extensive features, and capability to mitigate key
vulnerabilities in contemporary online applications successfully.

Funding Statement: The authors received no specific funding for this study.

Int. J.Adv.Sig.Img.Sci, Vol. 10, No. 2, 2024

22

Conflicts of Interest: The authors declare they have no conflicts of interest to
report regarding the present study.

REFERENCES

[1]. F. P. Putra, U. Ubaidi, A. Hamzah, W. A. Pramadi and A. Nuraini,

“Systematic Literature Review: Security Gap Detection on Websites Using
Owasp Zap,” Brilliance: Research of Artificial Intelligence, vol. 4, no. 1,
2024, pp. 348-355.

[2]. S. H. Sanne, “Investigations into Security Testing Techniques, Tools, and
Methodologies for Identifying and Mitigating Security Vulnerabilities,”
Journal of Artificial Intelligence, Machine Learning and Data Science, vol.
1, no. 1, 2024, pp. 626-631.

[3]. N. A. Syarifudinand L. Setiyani, “Analysis of Higher Education SIAKAD
Website Security Gaps Using the Vulnerability Assessment Method,”
International Journal of Multidisciplinary Approach Research and Science,
vol. 1, no. 3, 2024, pp. 332-344.

[4]. Y. Alkhurayyif and Y. S. Almarshdy, “Adopting Automated Penetration
Testing Tools: A Cost-Effective Approach to Enhancing Cybersecurity in
Small Organizations,” Journal of Information Security and Cybercrimes
Research, vol. 7, no. 1, 2024, pp. 51-66.

[5]. B. S. Pradhana, “Website Security Analysis Using the OWASP10 Method
(Case Study: almumtazparfumebatam. store),” Jurnal Kewarganegaraan,
vol. 8, no. 1, 2024, pp. 588-605.

[6]. C. P. Flores Jr and N. Richard, “Evaluation of Common Security
Vulnerabilities of State Universities and Colleges Websites Based on
OWASP,” Journal of Electrical Systems, vol. 20, no. 5s, 2024, pp. 1396-
1404.

[7]. A. F. Sebrina, A. Junaidi and A. N. Sihananto, “Testing posketanmu
website with google penetration testing and OWASP Top 10,” Jurnal
Mantik, vol. 8, no. 1, 2024, pp. 636-645.

[8]. A. Fadlil, I. Riadi and M. A. Mu’min, “Mitigation from SQL Injection Attacks
on Web Server using Open Web Application Security Project Framework,”
International Journal of Engineering, vol. 37, no. 4, 2024, pp. 635-645.

[9]. H. Ghazizadeh, G. Tamm and R. Creutzburg, “Automated Tools for Cloud
Security Testing,” Electronic Imaging, vol. 36, 2024, pp. 1-7.

[10]. A. A. Fernandes, “Evaluating the Top Application Security Tools: From
Static Analysis to Runtime Protection,” Asian Journal of Research in
Computer Science, vol. 17, no. 7, 2024, pp. 119-127.

[11]. V. Casola, A. De Benedictis, C. Mazzocca and V. Orbinato, “Secure
software development and testing: A model-based methodology,”
Computers & Security, vol. 137, 2024, pp. 1-16.

[12]. A. Alquwayzani, R. Aldossri and M. Frikha, “Mitigating Security Risks in
Firewalls and Web Applications using Vulnerability Assessment and
Penetration Testing (VAPT),” International Journal of Advanced Computer
Science & Applications, vol. 15, no. 5, 2024, pp. 1-17.

[13]. M. Z. Ariffin, and H. F. Hakim, “Use of Expert Systems to Predict Attacks
on Web-Based Servers,” Jurnal Inovasi Teknologi dan Edukasi Teknik, vol.
4, no. 2, 2024, pp. 1-11.

[14]. N. E. Ismail, N. H. Ali, M. A. Jalil, F. Yunusand A. D. Jarno, “A Proposed
Framework of Vulnerability Assessment and Penetration Testing (VAPT) in
Cloud Computing Environments from Penetration Tester Perspective,”

Int. J.Adv.Sig.Img.Sci, Vol. 10, No. 2, 2024

23

Journal of Advanced Research in Applied Sciences and Engineering
Technology, vol. 39, no. 1, 2024, pp. 1-14.

[15]. C. Feio, N. Santos, N. Escravanaand B. Pacheco, “An Empirical Study of
DevSecOps Focused on Continuous Security Testing,” IEEE European
Symposium on Security and Privacy Workshops (EuroS&PW), 2024, pp.
610-617.

[16]. H. Kurniawan and E. Christianto, “Analysis Vulnerability Website
Baleomolcreative dengan Metode Penetration Testing Execution Standard
& Vulnerability Assessment Pada Http Response Header Field,” Jurnal
JTIK (Jurnal Teknologi Informasi dan Komunikasi), vol. 8, no. 3, 2024, pp.
734-745.

[17]. E. F. Mangaoang and R. N. Monreal, “Common Vulnerabilities and
Exposures Assessment of Private Higher Educational Institutions Using
Web Application Security,” Journal of Electrical Systems, vol. 20, no. 5s,
2024, pp. 668-676.

[18]. R. P. Kollepalli, M. J. Reddy, B. L. Sai, A. Natarajan, S. Mathi and V.
Ramalingam, “An Experimental Study on Detecting and Mitigating
Vulnerabilities in Web Applications,” International Journal of Safety &
Security Engineering, vol. 14, no. 2, 2024, pp. 1-10.

[19]. V. I. Sugara, and I. W. Sriyasa, “Analisis Keamanan Web Menggunakan
Open Web Application Security Web (OWASP),” Indonesian Journal of
Computer Science, vol. 13, no. 2, 2024, pp. 3315-3327.

[20]. S. T. Makani, and S. Jangampeta, “Devops Security Tools Evaluating
Effectiveness in Detecting and Fixing Security Holes,” International
Journal of DevOps (IJDO), vol. 1, no. 2, 2024, pp. 1-12.

