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Abstract: Accurate and reliable diagnosis is critical for effective treatment 
planning for brain cancer. Recent advancements in deep learning have 
significantly enhanced diagnostic capabilities, but challenges persist in 
optimizing model performance for diverse and complex datasets. This study 
investigates the application of Polyak-Ruppert Optimization (PRO) to improve 
the prediction accuracy of conventional deep learning models for brain cancer 
diagnosis. Utilizing the REpository of Molecular BRAin Neoplasia DaTa 
(REMBRANDT) database, the proposed framework incorporates the advanced 
PRO technique to stabilize training and enhance generalization. The PRO’s 
impacts on convergence rates, model robustness, and predictive accuracy 
across multiple cancer types are analyzed. Experimental results demonstrate 
that VGG and ResNet models employing the PRO technique outperform the 
conventional architectures such as VGG and ResNet in classification metrics 
such as accuracy, sensitivity, and specificity. The potential of advanced 
optimization strategies such as PRO to refine deep learning applications in 
oncology paves the way for more accurate, efficient, and interpretable 
diagnostic systems. 
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I. INTRODUCTION 

Brain cancer is an abnormal proliferation of tumors inside brain tissue. 
These tumors can severely disrupt brain functioning, resulting in symptoms like 
headaches, seizures, cognitive deterioration, and movement impairment. Brain 
cancer is classified as primary brain tumors, which originate in the brain, and 
secondary or metastatic cancers, which disseminate from other regions of the 
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body. Gliomas, meningiomas, and medulloblastomas are prevalent categories of 
primary brain neoplasms [1]. 

The incidence of brain cancer in India has been progressively rising over 
the years. Recent statistics indicate that brain tumors constitute roughly 2% of 
all cancers in India, with an estimated incidence rate of 5–10 cases per 100,000 
individuals each year. The survival rate is very low, especially for high-grade 
Gliomas, highlighting the critical necessity for prompt and precise diagnosis. The 
restricted availability of advanced diagnostic facilities in rural and 
underprivileged areas intensifies this issue. According to the GLOBOCAN 2020 
survey [2-3], over fifty percent of the population in Asia was impacted by brain 
tumors compared to other continents. Figure 1 illustrates brain tumour statistics 
from the GLOBOCAN 2020 study. 

 

  

(a) Incidence (b) Mortality 

Fig. 1 GLOBOCAN 2020 Statistics 

Deep learning has arisen as an effective technique for medical image 
analysis, providing unparalleled precision in identifying and categorizing diseases 
from intricate datasets. Deep learning models, especially Convolutional Neural 
Networks (CNNs), have effectively analyzed Magnetic Resonance Imaging (MRI) for 
brain cancer diagnosis. These algorithms can aid radiologists by automating 
tumor identification, categorizing tumor kinds, and accurately predicting 
malignancy grades. 

Although deep learning has many advantages, its performance mainly 
depends on the necessity for extensively annotated datasets, managing 
discrepancies in image quality, and attaining generality across varied patient 
groups. This study seeks to tackle these issues by creating a strong deep 
learning-based system for brain cancer classification. The suggested method 
utilizes advanced neural network topologies to improve diagnostic precision while 
ensuring computational efficiency. 

II. RELATED WORKS 

A hybrid CNN architecture for the classification of brain cancers is 
examined in [4]. It employs four CNN architectures: InceptionV3, ResNet, 
DenseNet, and VGG16 for classification purposes. The predictions from these 
designs are evaluated using the XAI layer for final classification. A lightweight 
CNN model for classifying MRI brain images is described in [5]. As the name 
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implies, it comprises a limited quantity of convolutional and max-pooling layers, 
employing minimal repetitions. Batch normalization with an elevated learning rate 
is employed to expedite model training.  

A GraphMRINet architecture is developed in [6] to classify MRI brain 
images. The Prewitt operator is employed to identify edges during the graph 
building. Pixels with an intensity exceeding 128 are designated graph nodes, and 
the other pixel points are regarded as graph edges. An isomorphic graph network 
is utilized for classification via Adam optimization. MobileNetV2 is employed for 
the classification of brain images in [7]. Features extracted from the pre-trained 
MobileNetV2 are inputted into several classifiers. Three distinct classifiers, 
extreme learning machine, Schmidt neural network, and random vector 
functional-link network, are utilized for classification purposes. The network's 
weights and biases are optimized with the chaotic bat algorithm.  

A hybrid intelligent approach for brain tumor categorization is 
implemented in [8]. It employs median filtering for denoising, followed by applying 
a U-Net model to detect the cancer. The recovered features, including median 
binary pattern characteristics and local Gabor directional patterns, are classified 
utilizing a deep belief network and Bi-LSTM. A refined EfficientNet is discussed in 
[9] to classify brain images. It is a profound CNN that uses EfficientNet-B0 as its 
foundational model. The image quality is improved, and data augmentation is 
utilized to expand the dataset for efficient training. By incorporating additional 
layers, the base model is fine-tuned to get superior outcomes compared to VGG, 
ResNet, and Inception.     

A Parallel Deep CNN (PDCNN) is employed to classify MRI brain images 
[10]. The MRI images undergo preprocessing using anisotropic diffusion filtering 
before feature extraction with PDCNN. An ensemble method for classification 
utilizes SVM, Bayes, decision trees, and KNN classifiers. Deep Neural Networks 
(DNN) utilize time-frequency information to classify brain images, as discussed in 
[11]. Initially, deep features are extracted using a deep CNN with pooling feature 
mapping. Subsequently, time-frequency characteristics are retrieved and 
integrated with deep features. Differential DNN models are ultimately constructed 
for classification purposes. 

A hybrid CNN architecture integrated with Cubic SVM for brain tumor 
classification is described in [12]. It employs EfficientNetB0 and VGG-19 models 
for feature extraction, and the aggregated features are input into a Cubic SVM 
classifier for classification. A modified Visual Geometry Group (VGG) architecture 
is described in [13] to classify brain images. Conventional VGG architecture 
employs a max-pooling layer for feature reduction. The improved VGG system has 
a median-pooling layer instead of max-pooling. Median pooling mitigates the 
influence of noisy features during selection, whereas max pooling chooses noisy 
pixels in images impacted by salt and pepper noise. 

A brain image classification for cancer detection utilizing DNN is discussed 
in [14]. A deep wavelet autoencoder is employed for feature extraction, and an 
uncomplicated autoencoder model performs classification using three hidden 
layers. A DNN called BrainCDNet was developed in [15] to classify MRI brain 
images. A nimble filter is utilized to enhance the borders of the brain. It comprises 
three CNN blocks and employs concatenated pooling layers. To prevent overfitting, 
the weights are initialized using 'He Normal' initialization, supplemented by batch 
normalization and Global Average Pooling (GAP) through the initialization of 
weights in layers.  
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III. PROPOSED SYSTEM 

Deep learning involves training models by adjusting their parameters 
(weights and biases) to minimize a predefined loss function, quantifying the error 
between predicted and true outputs. Optimization algorithms such as Stochastic 
Gradient Descent (SGD) and Adam are used to iteratively update these parameters 
to reduce the loss and improve the model's performance. Neural networks have 
millions or billions of parameters; thus, finding the best combination of these 
parameters to make accurate predictions is a non-trivial task. Optimization helps 
navigate the high-dimensional parameter space to converge toward the optimal 
solution. The loss function of a deep learning model often has a complex 
landscape with local minima, saddle points, and flat regions. Effective 
optimization strategies help escape poor local minima and avoid stagnation in 
saddle points, steering the model toward global minima or acceptable solutions. A 
proper optimization technique can also significantly reduce the time it takes for a 
model to converge to a solution and influence how well it generalizes to unseen 
data.  Hence, by applying the right optimization techniques, deep learning models 
become more accurate, computationally feasible, and practically useful in real-
world applications. This paper employs the PRO to train conventional deep 
learning architectures such as VGG and ResNet.   

A. VGG Architecture 

VGG models [16] set new benchmarks by achieving high accuracy on 
image recognition tasks during their introduction. VGG networks use a 
straightforward architecture consisting of sequential convolutional layers with 
small (3x3) filters, followed by pooling layers. This consistent design is easy to 
understand and implement. VGG demonstrated that increasing network depth (up 
to 19 layers in VGG-19) could significantly improve performance, providing a 
baseline for deeper architectures. Small receptive fields (3x3 convolutions) 
enhance feature extraction, capturing spatial hierarchies of image patterns. 
Pretrained VGG models on ImageNet are widely used for transfer learning in tasks 
like image classification and object detection. 

Figure 2(a) shows the VGG16 architecture. VGG16 comprises 16 layers, 
including 13 convolutional layers and 3 fully connected layers. All convolutional 
layers in VGG16 utilize exclusively 3x3 kernels with a stride of 1 for feature map 
extraction. Consequently, the computational complexity of VGG designs is inferior 
to that of other deep learning models. In the initial two convolutional layers, 64 
filters are employed to extract the preliminary feature map, followed by a 
reduction in feature map size utilizing a 2x2 max pooling layer. Following the 
initial block, a pair of convolutional filters comprising 128 filters is employed in 
conjunction with a max pooling layer in the subsequent block. The subsequent 
three blocks employ three convolutional layers with 256, 512, and 512 filters to 
extract feature maps. VGG16 contains three fully connected layers where 
classification occurs via the back-propagation technique. The softmax function in 
the output layer categorizes the specified input test sample, which is defined by 
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where t
O is the output of the tth layer and n is the number of classes.   
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B. ResNet Architecture 

ResNet [17] introduced skip connections, which help gradients flow 
backward through the network, addressing issues like vanishing gradients in deep 
networks. ResNet allows scale to hundreds or even thousands of layers, improving 
accuracy without increasing the risk of overfitting or degraded performance. 
ResNet architectures generalize well across different datasets, making them 
versatile for image classification and medical imaging tasks. Pretrained ResNet 
models are among the most widely used backbones in deep learning pipelines, 
especially for transfer learning tasks.  

Figure 2(b) shows the ResNet architecture. The main differences between 
VGG and ResNet architectures are (1) the absence of a max pooling layer between 
convolutional layer blocks, (2) the presence of a shortcut connection in each 
residual block, and (3) the implementation of average pooling before the fully 
connected layer. In each residual block, the shortcut connection extends from 
input to output. In ResNet18, the shortcut link occurs between two convolutional 
layers.  All convolutional layers employ the rectified linear activation function, 
while the output layer utilizes the softmax activation function. Conventional 
architectures such as VGG and ResNet have 1000 neurons in the output layer to 
predict 1000 objects. However, this layer is modified to diagnose brain cancer with 
only two output neurons (normal/abnormal).    

C. Optimization Technique 

PRO is an advanced statistical technique that enhances the convergence 
and stability of iterative algorithms, particularly in machine learning and deep 
learning. Originating from stochastic approximation methods, this approach 
involves averaging the sequence of iterates generated during training, which helps 
to smooth out fluctuations and reduce variance. The Key features of PRO are as 
follows: 

 Iterate Averaging: Instead of using the final iteration as the output, 
the algorithm computes the average of all previous iterations. This 
often results in better convergence properties and enhances the 
stability of training, particularly on noisy or complex datasets. 

 Variance Reduction: Averaging helps mitigate noise's impact in 
SGD updates, leading to more stable optimization. It improves the 
model's ability to generalize to unseen data. 

 Faster Convergence: It improves the convergence rate for models 
trained on non-convex loss functions, making it particularly 
effective in deep learning applications. 

The PRO can address challenges in training deep learning models on diverse and 
high-dimensional datasets like REMBRANDT, improving prediction accuracy and 
reliability. The parameter update in SGD is defined by  
 

),;(1 ttttt yxL        (2) 

 

where   is the learning rate, t are the model parameters at iteration t,

),;( ttt yxL  is the gradient of the loss function (L) with respect to t  and the 

data samples are represented by ),( tt yx . In PRO, the averaged iterate (T) is 

defined in Eqn. (2) instead of simply using the final iteration t . The average 

iterate in PRO is defined as 
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(a) VGG-16 (b) ResNet-18 

Fig. 2 Conventional CNN architectures 

III. REpSULTS AND DISCUSSIONS 

The REMBRANDT dataset is an extensive compilation of brain cancer data, 
encompassing imaging, clinical, and genomic information. It was established to 
enhance research by amalgamating clinical data with molecular characterizations 
of brain tumors. The imaging component includes pre-surgical MRI scans from 
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130 patients, amounting to roughly 10.59 GB of data. The images are accessible 
in DICOM format via the cancer imaging archive [18-20]. In addition to imaging, 
REMBRANDT encompasses comprehensive clinical data and genetic profiles from 
glioma tissues. This includes gene expression arrays, copy number arrays, and 
clinical phenotypic data. The datasets are stored in Georgetown University's G-
DOC System, a platform that consolidates diverse biological data types for 
thorough analysis. Access to G-DOC necessitates registration. Figure 3 shows the 
brain MRI images in the REMBRANDT database.  

 

   

   

   

Fig. 3 Brain images in REMBRANDT database - Normal (Top row), Low-grade 
(Middle row) and High-grade (Bottom row) 

The PRO-based deep learning system's capability to classify all brain MRI 
images is assessed by classification accuracy. The capacity to differentiate 
between abnormal and normal brain MRI images is assessed by sensitivity and 
specificity. It is widely recognized that an increase in training samples enhances 
classification accuracy. Consequently, data augmentation is implemented via 
rotation and flipping procedures, resulting in 1000 images per class. The PRO-
based deep learning system is trained using 70% of images per class, and the 
remaining 30% are employed for testing the system. The performance of the 
proposed system is compared with that of conventional architectures such as 
VGG, ResNet, and AlexNet. The obtained confusion matrices are shown in Figure 
4.    
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(a) VGG-SGD (b) VGG-PRO 

  
(c) ResNet-SGD (d) ResNet-PRO 

Fig. 4 Confusion matrices by VGG and ResNet with SGD and PRO techniques 

The confusion matrices in Figure 4 indicate that the proposed PRO-based 
system accurately identifies more images than standard architectures such as 
VGG and ResNet. The proposed system accurately classifies 20 additional images 
compared to VGG-SGD and 11 more than ResNet-SGD. Based on the confusion 
matrices, the performance measures such as sensitivity and specificity are 
computed and are shown in Figure 5.  
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Fig. 5 Comparative analysis of conventional architectures with SGD and 
PRO techniques  

This work also includes the Receiver Operator Characteristic (ROC) curve 
to graphically depict the proposed system's performance. The graphic illustrates 
the relationship between two critical parameters: the true positive rate (sensitivity) 
and the false positive rate (1-specificity). Figure 6 shows the ROCs for the 
proposed PRO-based deep learning system and other conventional architecture.  

 

 

Fig. 6 Receiver Operator Characteristic Curves for Brain Image Diagnosis 
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It can be seen from Figure 6 that the ROC curve generated by the proposed 
system (VGG-PRO and ResNet-PRO) has a greater area under the curve. The 
proposed system provides superior classification performance by ResNet-PRO, 
with an AUC of 0.992.  

IV. CONCLUSIONS 

The proposed study examined the integration of PRO into deep learning to 
enhance accuracy in brain cancer diagnosis. This work analyses brain MRI images 
to identify samples based on their clinical conditions, contributing to exploring 
and improving deep learning systems. The main objective of this study is to 
increase the performance of conventional deep learning architectures such as 
VGG and ResNet for brain cancer diagnosis. An efficient optimization technique, 
PRO, is employed to train these architectures instead of SGD. Experimental 
results prove that the PRO technique outperforms SGD and performs better on 
the REMBRANDT database for classifying brain images. The future work involves 
developing and conducting research on CNNs by utilizing other activation 
functions, such as the exponential linear unit and the swish function.  
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