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Abstract: Accurately classifying rain sounds is essential in the field of climate 
investigation and environmental monitoring for understanding rainfall 
patterns, intensity, and how it affects ecosystems and urban infrastructure. 
This research presents a new method for rain sound classification combines 
decision trees (DTs) algorithms with networks of Internet of Things (IoT) audio 
sensors. To record ambient noises, particularly those caused by precipitation, 
the system makes use of a dispersed network of inexpensive IoT audio sensors 
placed in different places. A DTs algorithm, trained on a broad dataset 
including varying rain intensities and background sounds, is then applied by a 
central processing unit (CPU) to these recordings. When compared to more 
conventional approaches, experimental findings show the technique 
significantly improves rain sound classification accuracy, especially when it 
comes to differentiating between moderate and mild rain sounds and ambient 
noise. Automated weather alarm systems, urban drainage management, 
agricultural planning, and real-time rainfall monitoring are some of the 
potential uses for the proposed system. It helps advance environmental 
science, meteorology, and smart city projects by using IoT and machine 
learning to provide more accurate and faster rainfall data, which is essential 
for infrastructure planning and decision-making. 

Keywords: Acoustic sensing, environmental acoustics, IoT deployment, 
classification algorithms, rainfall patterns, data analytics, sensor fusion, 
ecological research. 

I. INTRODUCTION 

An effective and lightweight way to simulate rain for use in interactive 
virtual worlds is discussed in [1]. For virtual reality systems (like video games) 
with restricted audio memory budgets, existing techniques of simulating rain 
sounds include superimposing large amounts of scene-specific precompiled rain 
sounds. This may be rather memory intensive. As a solution to this problem, it 
provides a lightweight rain sound generation approach that relies just on eight 
fundamental rain sounds inspired by nature to decrease the audio memory limits. 

A flood is a typical natural calamity and may wreak havoc on people and 
their possessions [2]. Thus, to aid via an emergency response team, early 
detection is crucial. Previous methods for reliable flood detection relied on 
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computer vision algorithms trained on images captured by cameras, satellites, 
remote sensing devices, or radar. But there hasn't been much research on flood 
event detection using sound signals. This paper presents the comprehensive 
creation of a model for the identification of sound events associated with floods 
using deep learning. 

Sound events, from several sources, occur everywhere and vary by 
environment. Deep learning models and growing training data have improved 
event detection and classification over time [3]. Environmental sound event 
recognition systems typically utilize a general database to recognize sound events 
and not concentrate on specific environments. Another difficulty is training big 
neural networks takes many parameters and computer resources. It initially 
created a bespoke database of outdoor events surrounding smart homes and 
buildings to solve this problem. Rain, wind, human footfall, and car traffic are 
examples of audible occurrences. 

Weather stations help in water management, precise farming, and flood 
prediction. Africa has around 1/8 of the needed weather stations [3]. Reasons 
include costly set-up expenses, a shortage of experienced workers, and fragile 
instrumentation in traditional weather stations. Moving components make 
traditional weather stations prone to damage and create measurement and 
reading inaccuracies. This makes it hard to collect reliable real-time weather data 
with excellent geographical accuracy, resulting in erroneous projections. Recent 
machine learning research on rainfall estimate using acoustic data has classified 
rainfall quantities into intensity bands rather than describing rainfall intensities. 

Rainfall occurrences may be found in abundance in environmental audio 
recordings, which are currently being underutilized [5]. The potential for rainfall 
monitoring is supported by the fact extensive security cameras continually 
capture rainfall data. Researchers developed a system to automatically classifier 
rainfall levels using audio from security cameras as input. Converting the rainfall 
observation job into an audio classification task is made possible using rainfall 
level definitions. 

Natural catastrophes result from human error [6]. Floods inflict significant 
material and psychological damage. Floods inflict loss of homes, livelihoods, and 
family members, causing anguish. To live safely and peacefully, we must avoid 
floods. In this study, a sound sensor was employed with the Arduino water level 
system to monitor water flow, particularly in flood-prone locations. This 
investigation found a low scale with a little sound on the red light, a medium 
scale with a medium sound on the green light, and a high scale with a loud 
sound on the blue light. 

The rainfall weather station uses a tipping bucket rain gauge, a 
specialized tool for measuring and documenting several precipitation properties 
with great precision [7]. To measure rainfall, using a tipping bucket rain gauge 
might have a major impact on society's efficiency and people's quality of life. 
Using a tipping bucket rain gauge to precisely measure rainfall allows for the 
design of laborious irrigation methods, which is one way in which rainwater may 
positively impact sustainable agricultural irrigation techniques. Many people rely 
on rain gauges to keep tabs on precipitation, but these instruments are prone to 
mechanical failure and may be expensive to set up and keep running. 

Fine-scale rain observations are important for professional research, 
decision-making, and everyday life. Existing rain gauges cover less than 1% of 
the earth's surface, and number is diminishing [8]. Even with various restricted 
and immature supplemental approaches, rain measurements today are 
inaccurate. Crowd sourcing allows for a resilient rain observation network in 
unusual resolution and coverage using Smartphone’s, which are now ubiquitous 
and equipped with many advanced sensors. A unique rain detection and intensity 
measuring technology, uses Smartphone audio clips to identify and quantify rain. 
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II. RELATED WORKS 

Estimating rain erosive and soil erosion are just two of many 
environmental analyses that might benefit from knowing the length and severity of 
rainfall [9]. While there are several devices available to record the length and 
severity of rainfall, they may be expensive to purchase and typically need the 
presence of an operator to ensure proper operation. It investigates the potential for 
estimating the length and severity of rainstorms by analyzing the audible signals 
produced when raindrops impact natural surfaces and objects. 

A hydrophone used to record rain on water is like listening to rain on a tin 
roof; it captures the sound of rain as it falls at sea. Underwater, the sound of 
raindrops striking the water's surface is rather audible [10]. The ocean is like a big 
echo chamber in it effectively transmits sound, allowing sounds produced at sea 
level to travel below with minimal energy loss. To take advantage of all the current 
developments in the field to design state-of-the-art devices for passive acoustic 
rain measurements and for high-frequency sound monitoring in general. These 
devices might be built to fit on any of the several platforms offered by operational 
ocean observing networks [11]. 

The functional advantages of automated ambient sound detection are 
obvious. This technology enables the collection, search, and sorting of audio [12]. 
As a result of environmental sound's high noise level and absence of musical 
rhythm and melody as well as linguistic meaning sequence, it is challenging to 
identify shared characteristics are sufficiently representational of different 
environmental sound signals. It presents a recognition approach that utilizes 
multi-feature parameters and a time-frequency attention module to enhance the 
accuracy of ambient sound detection. The process starts with a pretreatment that 
uses phase information and multi-feature parameters to extract sound [13]. 

Provide a comprehensive framework for classifying and environmental 
noise includes all the most typical sounds heard in a metropolis, where there are 
many distinct kinds of noises and sources of noise [14]. Even though traditional 
methods of reducing noise have not been successful in combating the ever-
increasing problem of urban noise pollution, there has been encouraging 
movement in the academic community toward tackling environmental noise 
management via the lens of the sound’s cape framework. 

To monitor the health of older production equipment by listening for and 
feeling vibrations and noises produced by moving parts [15]. Despite the efficacy 
of vibration data in tracking operation status, not all machines are compatible 
with sensors and can be adapted for long-term use. Therefore, for less invasive 
monitoring, sound-based tracking may be the way to go. Although sound-based 
tracking eliminates the need to put sensors into equipment, environmental noise 
compromises tracking accuracy, which is the major drawback of this method. 

Convolutional Neural Networks (CNN) has recently emerged as the 
preferred option for a wide range of audio classification issues [16]. But CNN can 
only function well in environments where there is an abundance of training data; 
otherwise, able to adapt to new situations well. It provides signal latent subspace 
a new approach to sound classification outperforms the advanced methods while 
using much less data in this article. Our method involves using two separate pre-
trained CNN models to separate a sound into its specific features. 

Sound is the most important speaking method for all living species, yet 
humans have introduced more noise into the natural world, which may or may 
not be beneficial [17]. Thus, distinguishing and analyzing routine communication 
sounds is crucial nowadays. This research examines city noise. Sound 
classification may help the machine identify sounds. It analyzes the many ways to 
classifier sounds and train robots to learn and interpret data to provide acceptable 
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output. These investigations may also identify crime and explore the classification 
inputs and factors. 

III. PROPOSED SYSTEM 

A method which improves rain sound classification using IoT audio sensor 
networks and DTs algorithms are described. There are several modules in this 
method, and they all work together to make the system work better. The process 
flow of an IoT rain sound classification system is shown in Figure 1. 

 

 

Fig. 1 IoT Rain Sound Classification System Architecture 

The first step of the system is the deliberate placement of IoT audio 
sensors in several different areas. The purpose of these sensors is to record 
ambient noises, particularly those caused by precipitation. The sensors may be 
easily installed in urban, suburban, and rural settings due to their cheap cost and 
energy efficiency. Thorough planning goes into the positioning of sensors to 
provide sufficient coverage and effective data collecting. Once set up, the IoT audio 
sensors collect all sorts of environmental noises, such as traffic, wind, rain, and 
more.  

CPU and cloud-based server receives these audio recordings wirelessly and 
processes them. Depending on the conditions and needs of the deployment, the 
data transfer method could make use of cellular networks, Wi-Fi, or Bluetooth. 
The audio data is preprocessed, and features are extracted by the CPU upon 
receipt. This gets the data ready for classification. At this stage, normalize the 

 

Workflow of the Proposed System 

 

IoT Audio Sensor Network Deployment 

Data Acquisition & Transmission 

Central Processing Unit / Server (Preprocessing 
& Analysis) 

  Feature Extraction and Selection 

  Training Dataset Preparation (Audio Samples 
with Labels) 

Decision Tree Model Training & Optimization  

Real-time Rain Sound Classification 

Feedback and Adaptation (Model Fine-tuning)  

Applications and Integration 
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audio levels, filter out extraneous noise, and extract the elements to make rain 
sounds unique.  

Common aspects capture the distinct audio fingerprints of various kinds 
and intensities of rain include spectral features, temporal patterns, frequency 
distributions, and amplitude fluctuations. Training a DTs algorithm to classifier 
rain sounds using the retrieved attributes is the main component of the system. A 
large dataset is built, which includes recordings of different kinds of rain as well 
as ambient noises do not include rain, to provide a comparison. Supervised 
learning of the DTs model is made possible in the dataset by labeling each audio 
sample with its matching rain intensity or kind. Methods including 
hyperparameter tuning, cross-validation, and performance assessment measures 
are used to improve and evaluate the DTs algorithm. This makes sure the model 
can accurately classifier rain sounds regardless of the conditions or where the 
sensors are placed, and it can also generalize its results. 

 To optimize the model for classification mistakes and overfitting, it may be 
essential to make changes to the tree structure, remove superfluous branches, 
and tweak the parameters of the algorithm. After the DTs model has been trained 
and verified, it is sent to the CPU to classify incoming audio data in real-time from 
the IoT sensors. Based on the learnt decision criteria, the model examines the 
properties of the incoming audio samples and assigns them to the correct rain 
category. To recognize and react quickly to changing weather conditions, this 
approach permits continuous monitoring and classification of rain noises. To 
make better classifications in the long run, the system has feedback and adaptive 
processes. The model's decision rules and parameters are adaptive, meaning they 
change in response to new data and classification difficulties. This allows it to 
adapt to changing environmental circumstances and sensor properties. To long-
term deployment situations, this adaptive learning capacity provides stable 
performance and dependability. 

Several applications and decision-support systems may make use of the 
system's classifier rain sound data. Tools for managing urban drainage systems, 
automated weather alarm systems, platforms for real-time rainfall monitoring, and 
agricultural advisory systems are just a few examples. Stakeholders can make 
better choices and lessen the effects of severe weather because of the system's fast 
and accurate rainfall pattern and intensity data. After the IoT audio sensors are 
put into place, data is collected and sent to a central processing unit. In this step, 
data is prepared for classification in real-time by means of preprocessing and 
analysis. The model is fine-tuned by feedback processes, which increase its 
precision. Several environmental monitoring systems, including those that track 
rainfall, may include the system in their operations. The system's ability to 
effectively record, analyze, and use rain sound data for environmental 
management goals is made possible by these components. 

 
The proposed system relies primarily on DTs to classify rain sounds 

recorded by IoT audio sensors. The system's use of DTs is as follows: First, a DTs 
model is trained using a dataset of rain and ambient noises. Each dataset audio 
sample is annotated with rain intensity or kind. DTs algorithms identify audio 
samples using sound data attributes during training. Audio data characteristics 
are extracted before training the DTs model. These traits may include spectral, 
temporal, frequency, and amplitude changes. Rain sounds are differentiated using 
the DTs algorithm using the retrieved attributes. Optimizing the DTs model after 
training improves accuracy and generalization. Optimization may include 
trimming unneeded branches, rearranging the tree, and tweaking algorithm 
settings. Minimize classification mistakes and overfitting to guarantee the DTs 
appropriately identifies rain sounds. The trained DTs model is delivered to the 
CPU to classify IoT sensor audio input in real time. New audio samples are 
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analyzed and classified into rain categories using learnt decision rules. The 
system uses feedback to improve the DTs model. The model constantly adapts its 
decision rules and parameters to increase classification accuracy and adapt to 
changing environmental circumstances when it meets new data and classification 
challenges. 

III. RESULTS AND DISCUSSIONS 

Improved rain sound classification using an IoT audio sensor network and 
DTs yields findings show how far rainfall monitoring systems have come. 
Extensive testing and analysis reveal the system significantly outperforms the 
innovative in reliably differentiating between varieties and levels of rain noises, 
especially when confronted with substantial ambient noise. A major take away 
from this research is the considerable improvement in the accuracy of rain sound 
classification for both light and moderate precipitation.  

Intensities like this of rainfall might be hard to tell apart from other noises, 
including wind or city life. But the system always gets these rain sound categories 
right by using the DTs algorithm's decision-making skills and the strong 
characteristics collected from audio recordings. But the algorithm does an equally 
good job of categorizing sounds associated with thunderstorms and heavy rain. 
The DTs approach successfully identifies the unique sound signatures of heavy 
rain by examining spectral features, seasonal trends, and frequency distributions.  

In areas where precise data on rainfall patterns and intensities is essential 
for risk mitigation and decision-making, such as urban planning, agriculture, and 
disaster management, this capacity has far-reaching ramifications. Additionally, 
the use of IoT technology guarantees the gathering and transmission of data in 
real-time, allowing for quick reactions to changing weather conditions. Distributed 
IoT audio sensors improve the system's dependability and efficiency by providing 
thorough coverage and strong data collecting.  

Due to its scalability and versatility, the suggested system may fulfill the 
varied demands of stakeholders in both urban and rural areas. If a user wants 
better classification results, the research says need to optimize and validate the 
models. Optimization of the DTs algorithm is achieved by using methods like 
hyperparameter tuning and cross-validation, which aim to enhance precision and 
decrease mistakes. This iterative method guarantees the model can adapt to new 
data sets and maintains its strength in different environments. 

Continuous learning and adaptability are also made possible by the 
feedback systems built into the system. Dynamically adjusting its decision rules 
and parameters, the model improves performance when it meets new data and 
classification obstacles. By incorporating adaptive learning, the system becomes 
more resilient and capable of handling long-term deployment conditions effectively. 
The findings of this study have important real-world applications in many 
different fields.  

In agriculture, precise rainfall tracking allows for better crop management 
and irrigation scheduling, which in turn improves yields and makes better use of 
resources. To mitigate the likelihood of flooding and other disruptions to urban 
infrastructure, early identification of rainfall intensity is crucial for proactive flood 
control and planning. Having access to reliable rainfall data also helps 
meteorologists and climate scientists better understand and anticipate weather 
patterns, which in turn improves disaster planning and response. 

Table 1 shows the data used to train DTs to rain classification sounds. 
"Sample" denotes the sensor reading associated with each row. The audio data is 
characterized by features including time; zero crossing rate, sound intensity, and 
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frequency. If there is a rain kind or strength, "Rain Intensity" will indicate it. The 
DTs model can learn the links and patterns between attributes and the labels of 
rain intensity with the use of this data. In real-time applications, the model uses 
this information to reliably categorize rain sounds. 

 
TABLE. 1 Training Data For Rain Sound Classification 

 

Sample 
Sound Level 

(dB) 

Frequency 

(Hz) 

Zero Crossing 

Rate 

Duration 

(minutes) 

Rain 

Intensity 

1 65 1000 0.025 15 Light Rain 

2 72 1500 0.030 20 Moderate Rain 

3 80 2000 0.040 25 Heavy Rain 

4 90 2500 0.050 30 Thunderstorm 

 
Table 2 of the confusion matrix shows how well a model for rain sound 

classification performed. The model's predicted classes of rain intensities are 
shown in columns, whereas the actual classes are shown in rows. A count of 
cases sorted according to each cell is shown. By displaying instances of accurate 
and incorrect classification, this table enables evaluation of the model's accuracy. 
As a result, the model's strengths and areas for development may be better 
understood and addressed. 

 
TABLE. 2 Confusion Matrix For Rain Sound Classification Model 

 
Actual/Predicted Light Rain Moderate Rain Heavy Rain Thunderstorm 

Light Rain 150 20 5 0 

Moderate Rain 15 140 10 5 

Heavy Rain 2 10 130 18 

Thunderstorm 0 2 10 168 

 
The training accuracy of a DTs classifier in a rain sound classification 

system is shown in Figure 2 across multiple iterations. The accuracy grows 
noticeably with iteration, showing the model is becoming better at properly 
identifying rain sounds. The graph shows how the model learns, which is 
important for real-world applications since it shows how the model may improve 
its performance over time.  
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Fig. 2 Training Accuracy vs. Iterations 
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The DTs classifier in the rain sound classification system is evaluated 
using the metrics shown in Figure 3, a graph of evaluations. The model's 
performance is shown in detail, including precision, recall, F1 score, and accuracy. 
Metrics like this show how well the classifier strikes a balance between recall and 
accuracy when identifying various rain intensities. Using the graph, one may 
evaluate how well the DTs model categorizes rain noises.  

0.8
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0.82

0.83

0.84

0.85

 Precision  Recall F1 Score  Accuracy

 Evaluation Metrics 

 

Fig. 3 Evaluation Metrics for DTs Classifier in Rain Sound Classification 

The rain sound classification system shows that the DTs model does a 
good job of differentiating between the various rain intensities. Accurate weather 
monitoring and forecasting are facilitated by the model's 85% accuracy in 
classifying rain sounds. A key feature for uses such as urban planning and 
agriculture is its capacity to maintain a high degree of accuracy (85%), which 
guarantees little misclassification of rain occurrences. Even more impressive is the 
fact 82% of the time the model was able to accurately predict when it will rain.  An 
F1 score of 83% indicates the performance was balanced across different classes 
of rain intensity, demonstrating a harmony between recall and accuracy. 

All these measures add up to prove the algorithm can correctly recognize 
rain sound patterns, which is great news for many industries who use weather 
data for decision-making. An effective tool for real-time rain intensity 
categorization, the DTs provides practical solutions to improve disaster 
preparation, agricultural production, and urban infrastructure management. Its 
overall performance highlights its usefulness. Improving the model via further 
optimization and refining might increase its accuracy and make it more applicable 
to a wide range of environmental circumstances. 

IV. CONCLUSIONS 

The rain sound classification system's use of DTs proves that it can 
properly classify various rain intensities. Metrics like F1 score; accuracy, precision, 
and recall show that the model is reliable for detecting and categorizing rain 
patterns. Precious insights for weather monitoring and forecasting applications 
are provided by the DTs model, which minimizes misclassification and captures a 
considerable fraction of real rain events. Disaster preparation, agricultural 
planning, and urban infrastructure management are all improved with the use of 
DTs since they allow for more informed decision-making. With the model's 
precision in predicting rainfall patterns, stakeholders may improve their strategies 
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for allocating resources and efficiently minimize risks. The model's accuracy and 
its applicability across varied environmental situations may be further improved 
by ongoing development and optimization. The DTs model is a valuable resource 
for rain sound categorization, providing realistic answers to problems with 
weather forecast and monitoring. Its strong success highlights its importance in 
improving scientific knowledge and helping with weather-related decision-making, 
which in turn helps with sustainability and resilience in several areas 
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